Solitary waves in a dusty adiabatic electronegative plasma

2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.

2010 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
K. S. ASHRAFI ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in an adiabatic magnetized dusty electronegative plasma (containing Boltzmann electrons, Boltzmann negative ions, adiabatic positive ions, and negatively charged stationary dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation which admits a solitary wave solution. The combined effects of ion adiabaticity and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves, are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2012 ◽  
Vol 78 (3) ◽  
pp. 279-288 ◽  
Author(s):  
S. S. DUHA ◽  
M. S. RAHMAN ◽  
A. A. MAMUN ◽  
M. G. M. ANOWAR

AbstractBasic features of obliquely propagating dust ion-acoustic (DIA) solitary waves, and their multidimensional instability in a magnetized dusty electronegative plasma (DENP) containing Boltzmann electrons, Boltzmann negative ions, adiabatic mobile positive ions, and negatively charged stationary dust have been theoretically investigated by reductive perturbation method and small-k perturbation expansion technique. The combined effects of ion adiabaticity, external magnetic field (obliqueness), and negatively charged dust, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate of unstable perturbation are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves, and their perturbation modes. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2012 ◽  
Vol 78 (6) ◽  
pp. 677-681 ◽  
Author(s):  
N. R. KUNDU ◽  
A. A. MAMUN

AbstractThe dust-ion-acoustic solitary waves (DIA SWs) in an unmagnetized dusty plasma containing non-thermal electrons, cold mobile positive ions, and stationary arbitrarily (positively and negatively) charged static dust have been theoretically studied. The reductive perturbation technique has been employed to derive the Korteweg-de Vries equation, which admits SW solutions under certain conditions. It has been also shown that the basic features (amplitude, width, speed, etc.) of DIA SWs are significantly modified by the polarity of dust and non-thermal electrons. The implications of our results in space and laboratory dusty plasma situations are briefly discussed.


2012 ◽  
Vol 79 (2) ◽  
pp. 163-168 ◽  
Author(s):  
U. M. ABDELSALAM ◽  
M. M. SELIM

AbstractThe hydrodynamic equations of positive and negative ions, degenerate electrons, and the Poisson equation are used along with the reductive perturbation method to derive the three-dimensional Zakharov–Kuznetsov (ZK) equation. The G′/G-expansion method is used to obtain a new class of solutions for the ZK equation. At certain condition, these solutions can describe the solitary waves that propagate in our plasma. The effects of negative ion concentrations, the positive/negative ion cyclotron frequency, as well as positive-to-negative ion mass ratio on solitary pulses are examined. Finally, the present study might be helpful to understand the propagation of nonlinear ion-acoustic solitary waves in a dense plasma, such as in astrophysical objects.


2009 ◽  
Vol 75 (3) ◽  
pp. 413-431 ◽  
Author(s):  
A. A. MAMUN ◽  
N. JAHAN ◽  
P. K. SHUKLA

AbstractWe consider an adiabatic dusty plasma containing adiabatic inertialess electrons, adiabatic ions, and adiabatic negatively charged dust. The basic features of the dust–ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in such an adiabatic dusty plasma are investigated using the reductive perturbation method, which is valid for small amplitude SWs, and by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The combined effects of the adiabaticity of electrons/ions and negatively charged static/mobile dust on the basic features (polarity, speed, amplitude and width) of small as well as arbitrary amplitude DIA and DA SWs are examined explicitly. It is found that the combined effects of the adiabaticity of electrons/ions and negatively charged static/mobile dust significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are discussed briefly.


1985 ◽  
Vol 33 (2) ◽  
pp. 237-248 ◽  
Author(s):  
Y. Nakamura ◽  
J. L. Ferreira ◽  
G. O. Ludwig

Ion-acoustic solitons in a three-component plasma which consists of electrons and positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg-de Vries equation which takes the negative ions and the ion temperature into consideration. Head-on and overtaking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions.


2012 ◽  
Vol 79 (2) ◽  
pp. 233-238 ◽  
Author(s):  
N. ROY ◽  
S. S. DUHA ◽  
A. A. MAMUN

AbstractThe basic features of the nonlinear waves, which are associated with positive ion dynamics and dust charge fluctuation, have been investigated by employing the reductive perturbation method in a dusty electronegative plasma containing Boltzmann electrons, vortex-like negative ions, mobile positive ions, and charge fluctuating stationary dust (negatively charged). It has been observed that the basic features of the nonlinear waves (viz. amplitude, width, speed, etc.) in the plasma system under consideration have been significantly modified by the trapping parameter (introduced for vortex-like distribution of negative ions). The implications of the results (obtained from this investigation) in space and laboratory experiments have been briefly discussed.


2015 ◽  
Vol 30 (40) ◽  
pp. 1550216 ◽  
Author(s):  
O. Rahman

The nonlinear propagation of dust-ion-acoustic (DIA) solitary waves (SWs) in an unmagnetized four-component dusty plasma containing electrons and negative ions obeying vortex-like (trapped) velocity distribution, cold mobile positive ions and arbitrarily charged stationary dust has been theoretically investigated. The properties of small but finite amplitude DIASWs are studied by employing the reductive perturbation technique. It has been found that owing to the departure from the Maxwellian electron and Maxwellian negative ion distribution to a vortex-like one, the dynamics of such DIASWs is governed by a modified Korteweg–de Vries (mKdV) equation which admits SW solution under certain conditions. The basic properties (speed, amplitude, width, etc.) of such DIASWs are found to be significantly modified by the presence of trapped electron and trapped negative ions. The implications of our results to space and laboratory dusty electronegative plasmas (DENPs) are briefly discussed.


2012 ◽  
Vol 78 (6) ◽  
pp. 629-634 ◽  
Author(s):  
S. ISLAM ◽  
A.A. MAMUN ◽  
A. MANNAN

AbstractA theoretical investigation of the basic characteristics of cylindrical and spherical dust-ion-acoustic (DIA) solitary waves (SWs) is made in a dusty non-thermal plasma, whose constituents are non-thermal electrons, inertial ions, and arbitrarily charged stationary dust. The reductive perturbation method is used to derive the modified Gardner equation. The latter is numerically analyzed for both positively and negatively charged dust. The basic features of cylindrical and spherical DIA SWs, which are found to exist in such a dusty non-thermal plasma, are identified. The implications of our results to both space and laboratory plasma situations are also discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document