Stability of triangular lagrangian points in elliptical restricted three body problem under the radiating binary systems

2014 ◽  
Vol 353 (2) ◽  
pp. 457-464 ◽  
Author(s):  
A. Narayan ◽  
Nutan Singh
2019 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
A. Arantza Jency ◽  
Ram Krishan Sharma

The triangular Lagrangian points of the elliptic restricted three-body problem (ERTBP) with oblate and radiating more massive primary are studied. The mean motion equation used here is different from the ones employed in many studies on the perturbed ERTBP. The effect of oblateness on the mean motion equation varies. This change influences the location and stability of the triangular Lagrangian points. The points tend to shift in the y-direction. The influence of the oblateness on the critical mass ratio is also altered. But the eccentricity limit  for stability remains the same.   


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. Narayan ◽  
Amit Shrivastava

The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.


2021 ◽  
Vol 133 (6) ◽  
Author(s):  
Bálint Boldizsár ◽  
Tamás Kovács ◽  
József Vanyó

AbstractThe equations of motion of the planar elliptic restricted three-body problem are transformed to four decoupled Hill’s equations. By using the Floquet theorem, a perturbative solution to the oscillator equations with time-dependent periodic coefficients are presented. We clarify the transformation details that provide the applicability of the method. The form of newly derived equations inherently comprises the stability boundaries around the triangular Lagrangian points. The analytic approach is valid for system parameters $$0 < e \le 0.05$$ 0 < e ≤ 0.05 and $$0 < \mu \le 0.01$$ 0 < μ ≤ 0.01 where e denotes the eccentricity of the primaries, while $$\mu $$ μ is the mass parameter. Possible application to known extrasolar planetary systems is also demonstrated.


2021 ◽  
Vol 17 ◽  
pp. 1-11
Author(s):  
Jagadish Singh ◽  
Tyokyaa K. Richard

We have investigated the motion of the out-of-plane equilibrium points within the framework of the Elliptic Restricted Three-Body Problem (ER3BP) at J4 of the smaller primary in the field of stellar binary systems: Xi- Bootis and Sirius around their common center of mass in elliptic orbits. The positions and stability of the out-of-plane equilibrium points are greatly affected on the premise of the oblateness at J4 of the smaller primary, semi-major axis and the eccentricity of their orbits. The positions L6, 7 of the infinitesimal body lie in the xz-plane almost directly above and below the center of each oblate primary. Numerically, we have computed the positions and stability of L6, 7 for the aforementioned binary systems and found that their positions are affected by the oblateness of the primaries, the semi-major axis and eccentricity of their orbits. It is observed that, for each set of values, there exist at least one complex root with positive real part and hence in Lyapunov sense, the stability of the out-of-plane equilibrium points are unstable.


2016 ◽  
Vol 4 (2) ◽  
pp. 95
Author(s):  
Anindita Chakraborty ◽  
Ashutosh Narayan ◽  
Amit Shrivastav

The location of the collinear points in elliptical restricted three body problem, taking into account the effect of oblateness and radiation pressure of both primaries, has been obtained in this paper. Vinti's method has been exploited and the x-coordinates are obtained in the form of series solution. The linear stability has been investigated and it is found that the points are unstable in the Lyapunov's sense. The problem is also numerically explored taking into account two binary systems: Luyten-726 and Kruger-60.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
A. Narayan ◽  
A. Chakraborty ◽  
A. Dewangan

This work deals with the nonlinear stability of the elliptical restricted three-body problem with oblate and radiating primaries and the oblate infinitesimal. The stability has been analyzed for the resonance cases around ω1=2ω2 and ω1=3ω2 and also the nonresonance cases. It was observed that the motion of the infinitesimal in this system shows instable behavior when considered in the third order resonance. However, for the fourth order resonance the stability is shown for some mass parameters. The motion in the case of nonresonance was found to be unstable. The problem has been numerically applied to study the movement of the infinitesimal around two binary systems, Luyten-726 and Sirius.


Sign in / Sign up

Export Citation Format

Share Document