scholarly journals Modeling and analysis of periodic orbits around a contact binary asteroid

2015 ◽  
Vol 357 (2) ◽  
Author(s):  
Jinglang Feng ◽  
Ron Noomen ◽  
Pieter N. A. M. Visser ◽  
Jianping Yuan
2020 ◽  
Vol 493 (1) ◽  
pp. 171-183
Author(s):  
H S Wang ◽  
X Y Hou

ABSTRACT This article studies the secondary’s rotation in a synchronous binary asteroid system in which the secondary enters the 1:1 spin-orbit resonance. The model used is the planar full two-body problem, composed of a spherical primary plus a triaxial ellipsoid secondary. Compared with classical spin-orbit work, there are two differences: (1) influence of the secondary’s rotation on the mutual orbit is considered and (2) instead of the Hamiltonian approach, the approach of periodic orbits is adopted. Our studies find the following. (1) The genealogy of the two families of periodic orbits is the same as that of the families around triangular libration points in the restricted three-body problem. That is, the long-period family terminates on to a short-period orbit travelling N times. (2) In the limiting case where the secondary’s mass is negligible, our results can be reduced to classical spin-orbit theory, by equating the long-period orbit with free libration and the short-period orbit with the forced libration caused by orbit eccentricity. However, the two models show obvious differences when the secondary’s mass is non-negligible. (3) By studying the stability of periodic orbits for a specific binary asteroid system, we are able to obtain the maximum libration amplitude of the secondary (which is usually less than 90°) and the maximum mutual orbit eccentricity that does not break the secondary’s synchronous state. We also find an anti-correlation between the secondary’s libration amplitude and the orbit eccentricity. The (65803) Didymos system is taken as an example to show the results.


2019 ◽  
Vol 631 ◽  
pp. A149
Author(s):  
A. Rożek ◽  
S. C. Lowry ◽  
M. C. Nolan ◽  
P. A. Taylor ◽  
L. A. M. Benner ◽  
...  

Context. The potentially hazardous asteroid (85990) 1999 JV6 has been a target of previously published thermal-infrared observations and optical photometry. It has been identified as a promising candidate for possible Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect detection. Aims. The YORP effect is a small thermal-radiation torque considered to be a key factor in spin-state evolution of small Solar System bodies. In order to detect YORP on 1999 JV6 we developed a detailed shape model and analysed the spin-state using both optical and radar observations. Methods. For 1999 JV6, we collected optical photometry between 2007 and 2016. Additionally, we obtained radar echo-power spectra and imaging observations with Arecibo and Goldstone planetary radar facilities in 2015, 2016, and 2017. We combined our data with published optical photometry to develop a robust physical model. Results. We determine that the rotation pole resides at negative latitudes in an area with a 5° radius close to the south ecliptic pole. The refined sidereal rotation period is 6.536787 ± 0.000007 h. The radar images are best reproduced with a bilobed shape model. Both lobes of 1999 JV6 can be represented as oblate ellipsoids with a smaller, more spherical component resting at the end of a larger, more elongated component. While contact binaries appear to be abundant in the near-Earth population, there are only a few published shape models for asteroids in this particular configuration. By combining the radar-derived shape model with optical light curves we determine a constant-period solution that fits all available data well. Using light-curve data alone we determine an upper limit for YORP of 8.5 × 10−8 rad day−2. Conclusions. The bifurcated shape of 1999 JV6 might be a result of two ellipsoidal components gently merging with each other, or a deformation of a rubble pile with a weak-tensile-strength core due to spin-up. The physical model of 1999 JV6 presented here will enable future studies of contact binary asteroid formation and evolution.


Icarus ◽  
2010 ◽  
Vol 208 (1) ◽  
pp. 207-220 ◽  
Author(s):  
Marina Brozovic ◽  
Lance A.M. Benner ◽  
Christopher Magri ◽  
Steven J. Ostro ◽  
Daniel J. Scheeres ◽  
...  

2020 ◽  
Vol 171 ◽  
pp. 280-289
Author(s):  
Tiago M. Silva ◽  
Jean-Baptiste Bouvier ◽  
Kathleen Xu ◽  
Masatoshi Hirabayashi ◽  
Koki Ho

2016 ◽  
Vol 58 (3) ◽  
pp. 387-401 ◽  
Author(s):  
Jinglang Feng ◽  
Ron Noomen ◽  
Pieter Visser ◽  
Jianping Yuan

2006 ◽  
Vol 2 (S236) ◽  
pp. 401-416
Author(s):  
M. Yoshikawa ◽  
A. Fujiwara ◽  
J. Kawaguchi ◽  

AbstractThe spacecraft Hayabusa, which was launched in 2003, arrived at its destination, asteroid (25143) Itokawa in September 2005. The appearance of Itokawa, a small S-type near Earth asteroids, was totally unexpected. The surface is covered with a lot of boulders and there are only a few craters on it. It looks like a contact binary asteroid. The surface composition is quite similar to LL-chondrite. The estimated density is 1.9 ± 0.13 (g/cm3), so the macro-porosity is about 40%. This means that Itokawa is a rubble pile object. In Itokawa, we may see such things that are very close to building blocks of asteroids. In this paper, we review the mission and the first scientific results.


Sign in / Sign up

Export Citation Format

Share Document