Parasitoid communities and interactions with Diuraphis noxia in Australian cereal production systems

BioControl ◽  
2020 ◽  
Vol 65 (5) ◽  
pp. 571-582
Author(s):  
Thomas Heddle ◽  
Maarten Van Helden ◽  
Michael Nash ◽  
Kate Muirhead
2019 ◽  
Vol 64 (1) ◽  
pp. 73-93 ◽  
Author(s):  
Michael J. Brewer ◽  
Frank B. Peairs ◽  
Norman C. Elliott

Aphid invasions of North American cereal crops generally have started with colonization of a new region or crop, followed by range expansion and outbreaks that vary in frequency and scale owing to geographically variable influences. To improve understanding of this process and management, we compare the invasion ecology of and management response to three cereal aphids: sugarcane aphid, Russian wheat aphid, and greenbug. The region exploited is determined primarily by climate and host plant availability. Once an area is permanently or annually colonized, outbreak intensity is also affected by natural enemies and managed inputs, such as aphid-resistant cultivars and insecticides. Over time, increases in natural enemy abundance and diversity, improved compatibility among management tactics, and limited threshold-based insecticide use have likely increased resilience of aphid regulation. Application of pest management foundational practices followed by a focus on compatible strategies are relevant worldwide. Area-wide pest management is most appropriate to large-scale cereal production systems, as exemplified in the Great Plains of North America.


Author(s):  
Prashant Patil ◽  
Chandrashekhar Biradar ◽  
Layal Atassi ◽  
Rachid Moussadek ◽  
Mohamed Kharrat ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1223
Author(s):  
Long Liang ◽  
Bradley G. Ridoutt ◽  
Liyuan Wang

There is abundant evidence that greenhouse gas (GHG) emissions of cereal products, expressed per ton of grain output, have been trending downward over the past 20 years. This has largely been achieved through agricultural intensification that has concurrently increased area-based GHG emissions. The challenge is for agriculture to increase grain yields to meet the food demands of a growing world population while also contributing to climate stabilization goals by reducing net GHG emissions. This study assessed yield-based and area-based emissions and efficiencies for the winter wheat–summer maize (WWSM) rotation system over the period 1996 to 2016 using long-term, longitudinal, farm survey data and detailed soil emission data in Huantai county, Shandong Province, which is an archetype for cereal production across the North China Plain (NCP). In this region, yields have been increasing over time. However, nitrogen fertilizer inputs have decreased substantially with greater adoption of soil nutrient testing. In addition, there has been widespread adoption of residue incorporation into soils. As such, since 2002, the product carbon footprints of wheat and maize have reduced by 25% and 30%, respectively. Meanwhile, area-based carbon footprints for the rotation system have reduced by around 15% over the same period. These findings demonstrate the importance of detailed assessment of soil N2O emissions and rates of soil organic carbon sequestration. They also show the potential for net reductions in GHG emissions in cropping without loss of grain yields.


Sign in / Sign up

Export Citation Format

Share Document