Effects of the Design of a Rotary Blood Pump on Hemocompatibility

Author(s):  
M. V. Denisov ◽  
M. Walter ◽  
S. Leonhard ◽  
D. V. Telyshev
Keyword(s):  
2000 ◽  
Vol 24 (6) ◽  
pp. 412-420 ◽  
Author(s):  
Yukihiko Nosé ◽  
M. Yoshikawa ◽  
S. Murabayashi ◽  
T. Takano
Keyword(s):  

2018 ◽  
Vol 8 (8) ◽  
pp. 1275 ◽  
Author(s):  
Kai von Petersdorff-Campen ◽  
Yannick Hauswirth ◽  
Julia Carpenter ◽  
Andreas Hagmann ◽  
Stefan Boës ◽  
...  

Conventional magnet manufacturing is a significant bottleneck in the development processes of products that use magnets, because every design adaption requires production steps with long lead times. Additive manufacturing of magnetic components delivers the opportunity to shift to agile and test-driven development in early prototyping stages, as well as new possibilities for complex designs. In an effort to simplify integration of magnetic components, the current work presents a method to directly print polymer-bonded hard magnets of arbitrary shape into thermoplastic parts by fused deposition modeling. This method was applied to an early prototype design of a rotary blood pump with magnetic bearing and magnetic drive coupling. Thermoplastics were compounded with 56 vol.% isotropic NdFeB powder to manufacture printable filament. With a powder loading of 56 vol.%, remanences of 350 mT and adequate mechanical flexibility for robust processability were achieved. This compound allowed us to print a prototype of a turbodynamic pump with integrated magnets in the impeller and housing in one piece on a low-cost, end-user 3D printer. Then, the magnetic components in the printed pump were fully magnetized in a pulsed Bitter coil. The pump impeller is driven by magnetic coupling to non-printed permanent magnets rotated by a brushless DC motor, resulting in a flow rate of 3 L/min at 1000 rpm. For the first time, an application of combined multi-material and magnet printing by fused deposition modeling was shown. The presented process significantly simplifies the prototyping of products that use magnets, such as rotary blood pumps, and opens the door for more complex and innovative designs. It will also help postpone the shift to conventional manufacturing methods to later phases of the development process.


Author(s):  
Thananya Khienwad ◽  
Ronnachit Deepankaew ◽  
Praemai Wannawat ◽  
Phornphop Naiyanetr
Keyword(s):  

ASAIO Journal ◽  
2011 ◽  
Vol 57 (3) ◽  
pp. 158-163 ◽  
Author(s):  
Ruedger Kopp ◽  
Ralf Bensberg ◽  
Jutta Arens ◽  
Ulrich Steinseifer ◽  
Thomas Schmitz-Rode ◽  
...  

2018 ◽  
Vol 42 (9) ◽  
pp. 879-890 ◽  
Author(s):  
Jarod T. Horobin ◽  
Michael J. Simmonds ◽  
Deepika Nandakumar ◽  
Shaun D. Gregory ◽  
Geoff Tansley ◽  
...  

Author(s):  
Feng Huang ◽  
Zhe Gou ◽  
Yang Fu

Physiological control of rotary blood pumps is becoming increasingly necessary for clinical use. In this study, the mean oxygen partial pressure in the upper airway was first quantitatively evaluated as a control objective for a rotary blood pump. A model-free predictive controller was designed based on this control objective. Then, the quantitative evaluation of the controller was implemented with a rotary blood pump model on a complete cardiovascular model incorporated with airway mechanics and gas exchange models. The results show that the controller maintained a mean oxygen partial pressure at a normal and constant level of 138 mmHg in the left heart failure condition and restored basic haemodynamics of blood circulation. A left ventricular contractility recovery condition was also replicated to assess the response of the controller, and a stable result was obtained. This study indicates the potential use of the oxygen partial pressure index during pulmonary gas exchange when developing a multi-objective physiological controller for rotary blood pumps.


Sign in / Sign up

Export Citation Format

Share Document