scholarly journals Molecular structure and biodegradation kinetics of linear alkylbenzene sulphonates in sea water

2006 ◽  
Vol 18 (5) ◽  
pp. 567-578 ◽  
Author(s):  
Jose A. Perales ◽  
Manuel A. Manzano ◽  
M. Carmen Garrido ◽  
Diego Sales ◽  
Jose M. Quiroga
2006 ◽  
Vol 18 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Jose A. Perales ◽  
Manuel A. Manzano ◽  
M. Carmen Garrido ◽  
Diego Sales ◽  
Jose M. Quiroga

1937 ◽  
Vol 20 (5) ◽  
pp. 737-766 ◽  
Author(s):  
A. G. Jacques

When 0.1 M NaI is added to the sea water surrounding Valonia iodide appears in the sap, presumably entering as NaI, KI, and HI. As the rate of entrance is not affected by changes in the external pH we conclude that the rate of entrance of HI is negligible in comparison with that of NaI, whose concentration is about 107 times that of HI (the entrance of KI may be neglected for reasons stated). This is in marked contrast with the behavior of sulfide which enters chiefly as H2S. It would seem that permeability to H2S is enormously greater than to Na2S. Similar considerations apply to CO2. In this respect the situation differs greatly from that found with iodide. NaI enters because its activity is greater outside than inside so that no energy need be supplied by the cell. The rate of entrance (i.e. the amount of iodide entering the sap in a given time) is proportional to the external concentration of iodide, or to the external product [N+]o [I-lo, after a certain external concentration of iodide has been reached. At lower concentrations the rate is relatively rapid. The reasons for this are discussed. The rate of passage of NaI through protoplasm is about a million times slower than through water. As the protoplasm is mostly water we may suppose that the delay is due chiefly to the non-aqueous protoplasmic surface layers. It would seem that these must be more than one molecule thick to bring this about. There is no great difference between the rate of entrance in the dark and in the light.


2015 ◽  
Vol 32 (7) ◽  
pp. 637-646 ◽  
Author(s):  
Mariko J. Lust ◽  
Ryan M. Ziels ◽  
Stuart E. Strand ◽  
Heidi L. Gough ◽  
H. David Stensel

2000 ◽  
Vol 21 (10) ◽  
pp. 1111-1118 ◽  
Author(s):  
P. Cañizares ◽  
A. De Lucas ◽  
L. Rodríguez ◽  
J. Villaseñor

1977 ◽  
Vol 66 (1) ◽  
pp. 97-110
Author(s):  
T. J. Bradley ◽  
J. E. Phillips

1. The drinking rate of the saline-water mosquito larva Aedes taeniorhyncus (100 nl.mg-1.h-1) is unaffected by the salinity of the external medium, but is directly proportional to the surface area of the animal. 2. Haemolymph Na+, Mg2+, K+, Cl-, SO42- and osmotic concentrations were measured in larvae adapted to 10%, 100% and 200% seawater and were found to be regulated within a narrow range. 3. With the exception of potassium, ionic concentrations in rectal secretion were found to increase with increasing concentrations of the sea water in which larvae were reared. 4. The osmotic concentration of rectal secretion was unaffected by changes in haemolymph osmotic concentration but did rise when sodium or chloride concentrations of the haemolymph were increased. High levels of these ions also stimulated the rate of fluid secretion. 5. Transport of chloride and sodium by the rectum exhibits the kinetics of allosteric rather than classical enzymes.


Sign in / Sign up

Export Citation Format

Share Document