Biodegradation Kinetics of 17α-Ethinylestradiol in Activated Sludge Treatment Processes

2015 ◽  
Vol 32 (7) ◽  
pp. 637-646 ◽  
Author(s):  
Mariko J. Lust ◽  
Ryan M. Ziels ◽  
Stuart E. Strand ◽  
Heidi L. Gough ◽  
H. David Stensel
2000 ◽  
Vol 41 (1) ◽  
pp. 223-230 ◽  
Author(s):  
M.F. Sevimli ◽  
A.F. Aydin ◽  
Ì. Öztürk ◽  
H.Z. Sarikaya

The aim of this study is to characterize the wastewater from an opium alkaloid processing plant and to evaluate alternative treatment techniques to upgrade an existing full-scale biological activated sludge treatment plant having problems of high residual COD and unacceptable dark brown color. In this content firstly, long term operational records of the two stage aerobic activated sludge treatment plant of the opium alkaloid factory located in Afyon province of Turkiye were evaluated. The operating results for the last three years were statistically analyzed and median and 95-percentile values were determined for the parameters including chemical and biological oxygen demand (COD and BOD5) and treatment efficiencies. Specific wastewater generation was found as 6.7 m3 per ton of the opium capsule processed. In the following stage of the study, three additional treatment processes were experimentally tested: anaerobic pretreatment, post treatment of aerobically treated effluents with lime and ozone. Pilot scale upflow anaerobic sludge blanket reactor (UASBR) experiments have demonstrated that about 70 percent of the incoming COD can be removed anaerobically. Chemical treatability studies with lime for the aerobically treated effluent have shown that about 78 percent color and 46 percent COD removals can be obtained with lime dosage of 25 gl−1. Post treatment of the effluents of the existing two stage aerobic treatment with ozone also resulted in significant color and COD reduction.


2009 ◽  
Vol 59 (2) ◽  
pp. 241-247 ◽  
Author(s):  
K. Sekyiamah ◽  
H. Kim

A wastewater treatment plant consists of unit processes designed to achieve specific waste reduction goals. Offensive odors associated with these treatment processes are a constant source of public complaints. The purpose of this study was to statistically determine the process parameters that influence the formation of volatile sulfur compounds (VSCs) in the secondary treatment system. A statistical model was developed to relate the process parameters to the formation of VSCs in this system. The model established that F/M ratio, sludge blanket depth and SSV60 were the dominant process parameters that influenced the formation of VSCs in the secondary sedimentation basin. This model provides a useful tool for plant engineers to predict and control the VSC formation in a secondary activated sludge treatment system.


2001 ◽  
Author(s):  
◽  
Gavin David Drysdale

Up until now extensive work has been done to develop kinetic models and related software that can be used successfully to simulate and design nitrification denitrification (ND) and nitrification denitrification biological excess phosphorus removal (NDBEPR) systems for efficient nitrogen removal. The denitrification kinetics of these systems have primarily been determined and attributed to the ordinary heterotrophic bacteria, now also known as the OHO fraction, otherwise not involved in biological excess phosphorus removal. However, denitrification kinetics determined for ND systems have been found to vary considerably at times when applied to NDBEPR systems because of varying OHO active fraction estimates and the unexplained occurrence of anoxic phosphorus removal and anysuccess achieved to date has been some what fortuitous. Ultimately variations in process performance and kinetics are attributable to inadequate control and lack of understanding of the ecological, physiological and biochemical activities of constituent microorganisms. There is growing concern and movement towards a better understanding of the microbial community within activated sludge in order to gain optimal control of the process.


1994 ◽  
Vol 29 (5-6) ◽  
pp. 177-187 ◽  
Author(s):  
E. R. Hall ◽  
W. G. Randle

Laboratory-scale activated sludge (AS), facultative stabilization basin (FSB) and aerated stabilization basin (ASB) processes were operated in parallel treating bleached kraft mill effluent under controlled SRT and temperature conditions, to assess the chlorinated phenolics removal efficiencies attainable in each. The structure and extent of chlorination of the chlorophenolic compounds monitored appeared to contribute to the differing removal efficiencies observed. Under most operating conditions, treatment process effluents contained chronically toxic levels of pentachlorophenol-equivalent toxicity (TEQ). A companson of the results obtained from the FSB, ASB and AS processes indicated that, under most operating conditions, chlorophenolics removal in low rate treatment systems is superior to that in a higher rate activated sludge treatment process. However, it was also observed that operation at long SRT and moderate temperature permitted enhanced removal of chlorophenolics and reduced TEQs to less than threshold values, in all three treatment processes.


Sign in / Sign up

Export Citation Format

Share Document