scholarly journals Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species

2015 ◽  
Vol 123 (3) ◽  
pp. 313-327 ◽  
Author(s):  
Kevin E. Mueller ◽  
Sarah E. Hobbie ◽  
Jon Chorover ◽  
Peter B. Reich ◽  
Nico Eisenhauer ◽  
...  
Ecosystems ◽  
2016 ◽  
Vol 19 (4) ◽  
pp. 645-660 ◽  
Author(s):  
Seid Muhie Dawud ◽  
Karsten Raulund-Rasmussen ◽  
Timo Domisch ◽  
Leena Finér ◽  
Bogdan Jaroszewicz ◽  
...  

2006 ◽  
Vol 21 (5) ◽  
pp. 364-371 ◽  
Author(s):  
Swantje Oostra ◽  
Hooshang Majdi ◽  
Mats Olsson

2013 ◽  
Vol 309 ◽  
pp. 4-18 ◽  
Author(s):  
Lars Vesterdal ◽  
Nicholas Clarke ◽  
Bjarni D. Sigurdsson ◽  
Per Gundersen

2015 ◽  
Vol 4 ◽  
pp. 114-125 ◽  
Author(s):  
C.H. Shaw ◽  
K.A. Bona ◽  
W.A. Kurz ◽  
J.W. Fyles

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 979
Author(s):  
Natalia Lukina ◽  
Anastasia Kuznetsova ◽  
Elena Tikhonova ◽  
Vadim Smirnov ◽  
Maria Danilova ◽  
...  

Research Highlights: It was found that both tree species and ground vegetation affected soil carbon stock in boreal forests. Carbon stocks in the mineral layers were related negatively to the C/N ratio in the organic horizon and pine proportion in the growing stock volume, and positively to the share of herbaceous plants and the proportion of spruce. Background and Objectives: Existing research showed the effects of tree species on soil carbon stocks in organic horizons, but these effects were less clear in mineral horizons. Little is known about the effects of ground vegetation on soil carbon stock. This study aims to identify associations between the forest vegetation composition and soil carbon stocks in northwestern Russia. Materials and Methods: Research data from 109 pine, spruce and birch forests of different Cajander’s and Sukachev’s types with different functional compositions of ground vegetation at autonomous positions are discussed in this paper. The V-test was used to assess the impact of vegetation on soil carbon stocks. Results: Variations in Carbon stocks in the mineral layers were associated with the soil types and vegetation composition. Carbic Albic Podzols accumulated the least amount of carbon in the mineral profile. Carbon stock in the mineral layers in pine forests was considerably lower than in spruce and birch forests. Spruce forests with the highest share of herbaceous plants were characterised by the highest carbon stocks in the mineral layers, while pine forests with dwarf shrubs and green mosses accumulated more carbon in the organic layers, but carbon stocks in the mineral layers here were the lowest. Conclusions: Differences in soil carbon stocks between and within northern and middle taiga in northwestern Russia were associated not only with soil types but also with the proportions of forest types dominated by different tree species and ground vegetation functional groups.


2021 ◽  
Vol 9 (2) ◽  
pp. 144-158
Author(s):  
Chris H. Wilson ◽  
Joao M. Vendramini ◽  
Lynn E. Sollenberger ◽  
S. Luke Flory

Grasslands occupy significant land area and account for a large proportion of the global soil carbon stocks, yet the direct effects of grazing and genotypic composition on relationships between shoot and root production are poorly resolved. This lack of understanding hinders the development of models for predicting root production in managed grasslands, a critical variable for determining soil carbon stocks. We quantified the effects of season-long defoliation treatments on both shoot and root production across 4 cultivars of a widely planted pasture grass species (Paspalum notatum Flüggé) in a common garden setting in South Florida, USA. We found that infrequently applied (4 weekly) severe defoliation (to 5 cm) substantially enhanced shoot production for all cultivars, while severe defoliation reduced root production across cultivars, regardless of frequency. Overall, there was no significant relationship between shoot and root production. Our results showed that above-ground and below-ground productivity are only weakly coupled, suggesting caution against use of simple above-ground proxies to predict variations in root production in grasslands. More broadly, our results demonstrated that improved modeling and management of grasslands for below-ground ecosystem services, including soil carbon sequestration/stocks, must account for intraspecific genetic variation and responses to defoliation management.


2016 ◽  
Vol 67 (1) ◽  
pp. 61-69
Author(s):  
M Forouzangohar ◽  
R Setia ◽  
DD Wallace ◽  
CR Nitschke ◽  
LT Bennett

2021 ◽  
Vol 446 ◽  
pp. 109500
Author(s):  
Gaurav Mishra ◽  
Avishek Sarkar ◽  
Krishna Giri ◽  
Arun Jyoti Nath ◽  
Rattan Lal ◽  
...  

2016 ◽  
Vol 158 ◽  
pp. 186
Author(s):  
Martin Gauder ◽  
Norbert Billen ◽  
Sabine Zikeli ◽  
Moritz Laub ◽  
Simone Graeff-Hönninger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document