Robust three-field finite element methods for Biot’s consolidation model in poroelasticity

2017 ◽  
Vol 58 (2) ◽  
pp. 347-372 ◽  
Author(s):  
Jeonghun J. Lee
2017 ◽  
Vol 17 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Trygve Bærland ◽  
Jeonghun J. Lee ◽  
Kent-Andre Mardal ◽  
Ragnar Winther

AbstractWe discuss the construction of robust preconditioners for finite element approximations of Biot’s consolidation model in poroelasticity. More precisely, we study finite element methods based on generalizations of the Hellinger–Reissner principle of linear elasticity, where the stress tensor is one of the unknowns. The Biot model has a number of applications in science, medicine, and engineering. A challenge in many of these applications is that the model parameters range over several orders of magnitude. Therefore, discretization procedures which are well behaved with respect to such variations are needed. The focus of the present paper will be on the construction of preconditioners, such that the preconditioned discrete systems are well-conditioned with respect to variations of the model parameters as well as refinements of the discretization. As a byproduct, we also obtain preconditioners for linear elasticity that are robust in the incompressible limit.


Author(s):  
Yuwen Li ◽  
Ludmil T Zikatanov

Abstract We present residual-based a posteriori error estimates of mixed finite element methods for the three-field formulation of Biot’s consolidation model. The error estimator are upper and lower bounds of the space-time discretization error up to data oscillation. As a by-product, we also obtain a new a posteriori error estimate of mixed finite element methods for the heat equation.


2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


1983 ◽  
Author(s):  
W. HABASHI ◽  
M. HAFEZ ◽  
P. KOTIUGA

Sign in / Sign up

Export Citation Format

Share Document