Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

2018 ◽  
Vol 167 (3) ◽  
pp. 399-420 ◽  
Author(s):  
Rey DeLeon ◽  
Micah Sandusky ◽  
Inanc Senocak
2021 ◽  
pp. 110240
Author(s):  
Benjamin Constant ◽  
Stéphanie Péron ◽  
Héloïse Beaugendre ◽  
Christophe Benoit

2021 ◽  
pp. 110630
Author(s):  
Seiji Kubo ◽  
Atsushi Koguchi ◽  
Kentaro Yaji ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
...  

2011 ◽  
Vol 134 (1) ◽  
Author(s):  
S. Jafari ◽  
N. Chokani ◽  
R. S. Abhari

The accurate modeling of the wind resource over complex terrain is required to optimize the micrositing of wind turbines. In this paper, an immersed boundary method that is used in connection with the Reynolds-averaged Navier–Stokes equations with k-ω turbulence model in order to efficiently simulate the wind flow over complex terrain is presented. With the immersed boundary method, only one Cartesian grid is required to simulate the wind flow for all wind directions, with only the rotation of the digital elevation map. Thus, the lengthy procedure of generating multiple grids for conventional rectangular domain is avoided. Wall functions are employed with the immersed boundary method in order to relax the stringent near-wall grid resolution requirements as well as to allow the effects of surface roughness to be accounted for. The immersed boundary method is applied to the complex terrain test case of Bolund Hill. The simulation results of wind speed and turbulent kinetic energy show good agreement with experiments for heights greater than 5 m above ground level.


2010 ◽  
Vol 138 (3) ◽  
pp. 796-817 ◽  
Author(s):  
Katherine A. Lundquist ◽  
Fotini Katopodes Chow ◽  
Julie K. Lundquist

Abstract This paper describes an immersed boundary method that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Mesoscale models, such as WRF, are increasingly used for high-resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. The use of an alternative-gridding technique, known as an immersed boundary method, alleviates coordinate transformation errors and eliminates restrictions on terrain slope that currently limit mesoscale models to slowly varying terrain. Simulations are presented for canonical cases with shallow terrain slopes, and comparisons between simulations with the native terrain-following coordinates and those using the immersed boundary method show excellent agreement. Validation cases demonstrate the ability of the immersed boundary method to handle both Dirichlet and Neumann boundary conditions. Additionally, realistic surface forcing can be provided at the immersed boundary by atmospheric physics parameterizations, which are modified to include the effects of the immersed terrain. Using the immersed boundary method, the WRF model is capable of simulating highly complex terrain, as demonstrated by a simulation of flow over an urban skyline.


Sign in / Sign up

Export Citation Format

Share Document