The correlation of cardiac biomarkers and myocardial iron overload based on T2* MRI in major beta-thalassemia

Author(s):  
Hakimeh Saadatifar ◽  
Arezoo Niayeshfar ◽  
Maysam Mard-Soltani ◽  
Ehsan Bahrampour ◽  
Saeed Khalili ◽  
...  
Author(s):  
Alaa Mutter Jabur Al-Shibany ◽  
AalanHadi AL-Zamili

Patients with transfusion dependent thalassemia major is often associated with iron overload. Proper use of iron chelators to treat iron overload requires an accurate measurement of iron levels. Magnetic resonance T2-star (T2* MRI) is the preferred method to measure iron level in the liver andthe heart. The goal of our study was to see if there is an association exists between serum ferritin level and T2* MRI results in patients with beta thalassemia major.This study was done in Al-Diwaniya Thalassemia center,Maternity and children teaching hospital,Iraq. During the period from 1st of January to 31st of October. Fifty eight patients with a diagnosis of beta thalassemia major were enrolled in the study. They were older than five years old,transfusion dependent and on chelation therapy. Hepatic and Myocardial T2*MRI and the mean serum ferritin levels were measured during the study period for all patients.There is a significant correlation was observed between serum ferritin level and cardiac T2*MRI (p=0.018 ). also a significant correlation was observed between serum ferritin and hepatic T2*MRI (p=0.02). Neither cardiac T2* MRI nor hepatic T2* MRI show any correlation with the mean age.our study also showa positive correlation between the patients withcardiac T2* MRI and the development of diabetes mellitus in contrast to hepatic T2* MRI in which there is no any correlation. Hypothyroidism was observedno correlation with either cardiac or hepatic T2* MRI.Our results showed a positiveassociation between hepatic, cardiac T2*MRI and serum ferritin levels.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4031-4031
Author(s):  
Oscar Boutros Lahoud ◽  
Velta Willis ◽  
William B. Solomon

Abstract Background: Patients with beta-thalassemia intermedia are at increased risk of developing clinically relevant iron overload independent of blood transfusions, which can result in serious sequelae, including liver, myocardial and endocrine dysfunction. This is thought to be modulated by downregulation of hepcidin and upregulation of ferroportin1. Standard of care in these patients has essentially consisted of iron-chelating agents such as deferasirox, presumably based on the hypothesis that phlebotomy would worsen clinical anemia and potentially exacerbate further ineffective erythropoeisis2. We present the cases of two patients with non-transfusion dependent iron overload secondary to beta-thalassemia intermedia, who were treated with serial phlebotomies as well as hydroxyurea. Case #1: Patient A was heterozygous for the Gln39X beta zero thalassemic allele as well as heterozygous for the H63D HFE-1 allele, and presented with a serum ferritin of 1928 ng/ml. T2* MRI of liver and myocardium demonstrated mild iron deposition in the liver and none in the heart. During a period of 18 months Patient A received serial phlebotomies and hydroxyurea 500 mg daily with decrease in serum ferritin to 770 ng/ml with no change in her baseline Hb and an increase in Hb F from 7% to 15%. Repeat T2*MRI of the liver and myocardium demonstrated no clinically significant iron deposition. Patient A continues to be phlebotomized every one to two months. Case #2: Patient B was heterozygous for the Gln39X beta zero allele with no mutant HFE-1 alleles, and presented with a serum ferritin of 1230 ng/ml. T2* MRI of the liver and myocardium demonstrated iron deposition in the liver and none in the heart. Over a period of twelve months patient B received serial phlebotomies and hydroxyurea 500 mg daily with decrease in his serum ferritin to 450 ng/mL, with no change in baseline Hb and no increase in Hb F. Repeat T2* MRI demonstrated no cardiac iron overload and slight improvement in the liver T2* relaxation time. Patient B continues to be phlebotomized every one to two months. Discussion: We presented two cases of non-transfusion dependent iron overload secondary to beta thalassemia intermedia managed with the combination of phlebotomy and low dose hydroxyurea, which resulted in clinically significant decrease in serum ferritin. In both patients the decrease in serum ferritin averaged ~65 ng/ml/month. As a reference, the higher dose regimen of deferasirox 10 mg/kg/d has a reported average decrease in serum ferritin of around 222 ng/mL/year, corresponding to an estimated 18.5 ng/mL/month2. There was no change in either patient’s Hb/Hct or markers of ineffective erythropoiesis such as LDH, indirect bilirubin and reticulocyte count. This could be due to a somewhat protective effect from hydroxyurea, which may decrease unbound alpha-globin chains, thereby permitting phlebotomy while maintaining adequate counts. Conclusion: These two cases suggest that in some non-transfusion dependent patients, the combination of phlebotomy and hydroxyurea may be an appropriate first-line treatment of iron overload due to beta-thalassemia. It appears to potentially offer enhanced efficacy with presumably less toxicity than standard iron-chelating agents in selected patients. Further investigation is needed to determine the specific population that would benefit most from this combination. The optimal treatment modality/combination in those patients has yet to be determined. Additional studies about treatment effect on iron-regulatory pathways are warranted. References: (1) Gardenghi S, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 2007: 109(11):5027-5035. (2) Taher AT, et al. Deferasirox reduces iron overload significantly in nontransfusion-dependent thalassemia: 1-year results from a prospective, randomized, double-blind, placebo-controlled study. Blood 2012; 120(5): 970-977. Disclosures No relevant conflicts of interest to declare.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85379 ◽  
Author(s):  
Gaohui Yang ◽  
Rongrong Liu ◽  
Peng Peng ◽  
Liling Long ◽  
Xinhua Zhang ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Yazdan Ghandi ◽  
Danial Habibi ◽  
Aziz Eghbali

Background: Cardiac involvement in beta-thalassemia major patients is an important cause of mortality. Therefore, in these patients, timely diagnosis of cardiac disorder is essential. Objectives: The present study aimed at determining the association between cardiac iron overload and fragmented QRS (fQRS). Methods: This cross-sectional study was conducted on 40 β-TM patients, aged 5 - 40 years. The presence of fQRS was evaluated in 12-lead surface electrocardiograms. Cardiac T2* MRI was performed to determine the iron overload. The patients were divided into four groups of chelation therapy. Results: The mean age of patients was reported to be 22.50 ± 6.75 years. The groups showed no significant difference regarding gender, age, or left ventricular ejection fraction. The presence of fQRS was detected in 10 patients (25%), while T2* value was lower than 20 ms in 10 patients (25%). The mean age of patients with and without fQRS was 26.23 ± 2.71 and 19.40 ± 2.61 years, respectively (P = 0.001). The univariate analysis indicated that fQRS had a significant relationship with cardiac iron overload (OR = 5; 95% CI: 1.04 - 23.99; P < 0.044). The multiple logistic regression analysis represented a significant association between iron overload and fQRS (OR = 5.556; 95% CI: 1.027 - 30.049). The sensitivity and specificity of the fQRS against MRI were equal to 50% and 83.3% respectively. Conclusions: The absence of fQRS on ECGs could be a good predictor of the lack of cardiac iron overload in β-TM patients. The results showed that fQRS might indicate the no need for close monitoring for cardiac overload with cardiac MRI and aggressive chelation therapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1057-1057
Author(s):  
Alessia Pepe ◽  
Antonella Meloni ◽  
Stefano Salvadori ◽  
Silvia Macchi ◽  
Angelantonio Vitucci ◽  
...  

Abstract Introduction. Beta thalassemia major (β-TM) displays a great deal of genotypic heterogeneity, not fully investigated in terms of cause-effect. This prospective and multicentre study aimed to detect if different genotypic groups could predict the development of cardiovascular magnetic resonance (CMR) abnormalities and cardiac complications (CC). Methods. We considered 708 β-TM patients (373 females, 30.05±9.47 years), consecutively enrolled in Myocardial Iron Overload in Thalassemia (MIOT) network. Data were collected from birth to the first CMR imaging scan. Myocardial iron overload was assessed by the multislice multiecho T2* technique. Biventricular function parameters were quantified by cine images. Late gadolinium enhancement (LGE) images were acquired to detect myocardial fibrosis. Results. On the basis of the type of gene mutation, three groups of patients were identified: homozygotes β+ (N=158), compound heterozygotes β+ / β° (N=298) and homozygotes β° (N=252). Table 1 shows the effect of genotype group on the development of different cardiac outcomes. Compared to the milder genotype group homozygotes β+, the other two groups showed a significantly higher risk of myocardial iron overload (MIO) and left ventricular dysfunction. We recorded 90 (13.0 %) cardiac events: 46 heart failures (HF), 38 arrhythmias (33 supraventricular, 3 ventricular and 2 hypoinetic) and 6 pulmonary hypertensions (PH). No prospective association was detected between genotype group and HF and PH. The homozygous β° group showed a significantly higher risk of arrhythmias than the homozygous β+ group and at the limit of significance than the compound heterozygotes. Globally, homozygotes β° showed a significantly higher risk of CC than homozygotes β+. Conclusion. Different genotypic groups predict the development of MIO, left ventricular dysfunction, arrhythmias and CC in β-TM patients. These data support the knowledge of the different genotypic groups in the clinical management of β-TM patients. Table Table. Disclosures Pepe: Chiesi Farmaceutici S.p.A., ApoPharma Inc., and Bayer: Other: No profit support.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3368-3368
Author(s):  
Debmalya Bhattacharyya ◽  
Maitreyee Bhattacharyya ◽  
Saswata Chatterjee ◽  
Abhijit Chowdhury ◽  
Pramit Ghosh

Abstract Introduction: Transient Elastography (TE) of liver is a well established tool to measure liver stiffness, mainly used for assessment of hepatic fibrosis due to chronic hepatitis. Liver biopsy is the gold standard test for measurement of liver iron concentration (LIC) whereas T2* MRI is the best available non-invasive method for the same in thalassemia. We intended to use hepatic TE as an alternative cheaper tool to assess hepatic iron overload so that it can be applied to larger number of patients. Objective: To assess degree of liver stiffness by TE in patients with HbE beta thalassemia and correlate the findings with LIC calculation by T2* MRI of liver. Materials and Method: 53 patients with HbE beta thalassemia from the thalassemia clinic of Institute of Haematology and Transfusion Medicine, Medical College, Kolkata were enrolled for the study. Patients with known liver disease were excluded. Baseline data like HbE%, mutations, transfusion requirement, growth status, serum ferritin level etc were collected. All of them underwent TE of liver in the School of Digestive and Liver Diseases, IPGMER using the FibroScan Touch 502 machine (Di Marco et al, British Journal of Haematology, Volume 148,3, 476-479, February 2010). 20 randomly selected patients were also assessed by T2*MRI of liver for hepatic iron assessment at the same time. LIC calculation was done from T2* value (J S Hankins et al, Blood, 14 May 2009, Volume 113:20). Data were analyzed by SPSS software-19, IBM. Results: The patients with HbE beta thalassemia had a mean HbE level of 53.66 (±18.45) %. Common beta mutations [mostly IVS-1-5(G-C)] usually found in this part of India, were detected. Mean and median age of the study population was 24.11±13.11 years and 20 years, respectively. Median age of 1st transfusion was 11 years. 35.84% patients were non-transfusion dependent. 39/53 patients had facial deformity and growth retardation. Mean baseline hemoglobin was 7.10±0.76 gm/ dl. Mean serum ferritin level was 3183.66±338.45 ng/ml. TE showed 30.18 % patients had severe liver stiffness (Liver stiffness measurement, LSM >15 kPa) whereas 43.34% had minimum stiffness (LSM≤7 kPa). No significant statistical correlation was found between serum ferritin and LSM. 12/20 patients showed very high calculated LIC (>15 mg/g) and lower T2* value (<1.8 ms) whereas only 10% of them showed mildly elevated calculated LIC. Rest had intermediate LIC. Discussion: There is lack of data regarding hepatic iron overload in HbE beta thalassemia and so also from this part of India. There was a trend that higher the age, higher was the LSM irrespective of the serum ferritin level though not found statistically significant (Figure 1). Serum ferritin level was also not significantly correlated with the calculated LIC in those 20 patients assessed with T2* MRI. 2 patients with mildly elevated LIC had a high ferritin level. Preliminary report indicates that with increase in LSM there was increase in calculated LIC also. Statistical analysis revealed patients with LSM≥7.2 kPa had moderate or severe hepatic iron overload and thus undermine the need for routine T2*MRI. The cut off value signifies that patients with LSM<7.2 kPa might or might not have significantly high liver iron overload, so obviously to be assessed by T2*MRI (Table 1). Therefore use of TE may be an alternative preliminary diagnostic method to gauge hepatic iron overload in HbE beta thalassemia patients. It would be of more value in countries like India where T2* MRI facility is not yet feasible in many centers catering to huge number of HbE-beta thalassemia patients. However, further exploration with larger number of patients is necessary to establish association of LIC and LSM in a more robust way. Conclusion: In resource-poor countries like India, TE may be a relatively cheap tool to be used as a marker of hepatic iron overload in future. Table 1. Finding Cut off: ROC (TE-value and LIC categories), n=20 Positive if Greater Than or Equal Toa Sensitivity 1 - Specificity 2.3 1.00 1.00 3.4 1.00 .50 4.4 .94 .50 5.7 .88 .50 6.2 .83 .50 6.5 .77 .50 7.2 .77 .00 8.2 .72 .00 8.85 .66 .00 9.45 .61 .00 10.2 .55 .00 11.85 .50 .00 13.85 .44 .00 15.75 .38 .00 18.3 .33 .00 22.9 .27 .00 27.9 .22 .00 35.9 .16 .00 44.7 .11 .00 48.0 .05 .00 49.8 .00 .00 Table 2. The smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value is the maximum observed test value plus 1. LSM more than 7.2 had a sensitivity of 77.2 % and specificity of 100%. Figure 2. Figure 2. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
A Pepe ◽  
A Meloni ◽  
G Peritore ◽  
M Zerbini ◽  
N Vallone ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Private company. Main funding source(s): The MIOT project receives “no-profit support” from industrial sponsorships (Chiesi Farmaceutici S.p.A., ApoPharma Inc.). Background. Sickle β-thalassemia (Sβ-thal) is a hereditary hemoglobinopathy resulting from the combined heterozygosity for sickle cell and β-thalassemia genes. Cardiac involvement in Sβ-thal patients has been poorly investigated. Aim. We aimed to evaluate myocardial iron overload and cardiac function by cardiovascular magnetic resonance (CMR) in patients with Sβ-thal. Methods. One hundred and eleven Sβ-thal patients consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) network were studied and compared with 46 sickle cell disease (SCD) patients. Biatrial and biventricular function CMR parameters of Sβ-thal patients were compared with those of 111 healthy volunteers, matched by gender and age. Myocardial iron overload (MIO) was assessed by T2* technique. Cine images were acquired to quantify biventricular function. Macroscopic myocardial fibrosis was evaluated by late gadolinium enhancement (LGE) technique. Results. In Sβ-thal and SCD patients morphological and functional MR parameters were not significantly different, except for left atrial area and SVI (p = 0.023 and p = 0.048, respectively) that were significantly higher in SCD patients. No significant differences between the two groups were found in terms of myocardial iron overload and macroscopic myocardial fibrosis. When compared to healthy subjects, Sβ-thal patients showed significantly higher bi-atrial and biventricular parameters except for LVEF that was significantly lower (Fig.1). Conclusions. The CMR analysis confirmed that Sβ-thal and SCD patients are phenotypically similar. Since Sβ-thal patients showed markedly different morphological and functional indices from healthy subjects, it would be useful to identify Sβ-thal/SCD-specific bi-atrial and biventricular reference values.


2021 ◽  
Vol 8 (8) ◽  
pp. 1374
Author(s):  
Shailaja V. Mane ◽  
Sharad Agarkhedkar ◽  
Dyaneshwar Upase ◽  
Tushar Kalekar ◽  
P. Sindhura

Background: Frequent blood transfusions in thalassemia major is associated with iron overload in these patients. To reduce the mortality and morbidity, proper usage of iron chelators is necessary to treat iron overload. Cardiac magnetic resonance imaging (MRI) guides in quantification of iron overload in heart. The purpose of this study is to see the correlation between serum ferritin level and T2* MRI in patients with beta thalassemia major.Methods: Period of the study is September 2018 to September 2020. Total 25 patients diagnosed with β-thalassemia major above 5 years of age were enrolled in the study. They were on regular transfusions. Cardiac T2* MRI was done in these patients and correlated with serum ferritin levels.Results: There was no significant correlation observed between cardiac T2* MRI and serum ferritin values (p=0.66, r=-0.094).Conclusions: Our results showed no significant correlation between serum ferritin and cardiac T2* MRI values. Ferritin alone cannot be used as index of myocardial iron overload in thalassemia major.


Sign in / Sign up

Export Citation Format

Share Document