Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 2. Effect of catalyst on the mechanical and dynamic mechanical properties

Cellulose ◽  
2008 ◽  
Vol 16 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Aparecido Junior de Menezes ◽  
Daniel Pasquini ◽  
Antonio Aprígio da Silva Curvelo ◽  
Alessandro Gandini
2015 ◽  
Vol 30 (9) ◽  
pp. 1242-1254 ◽  
Author(s):  
Matheus Poletto ◽  
Ademir J Zattera

The mechanical and dynamic mechanical properties of cellulose fibers-reinforced polystyrene composites were investigated as a function of cellulose fiber content and coupling agent effect. The composites were prepared using a corotating twin-screw extruder and after injection molding. Three levels of filler loading (10, 20, and 30 wt%) and a fixed amount of coupling agent (2 wt%) were used. The results showed that a cellulose fiber loading of more than 20 wt% caused decrease in the mechanical properties. The addition of coupling agent substantially improves the mechanical and dynamic mechanical properties. The use of coupling agent improved the storage modulus and reduced the damping peak values of the composites due to the improved interfacial adhesion. The height of the damping peak was found to be dependent on the content of cellulose fiber and the interfacial adhesion between fiber and matrix. The adhesion factor values confirm that the better adhesion occurs when coupling agent is used.


2016 ◽  
Vol 47 (2) ◽  
pp. 211-232 ◽  
Author(s):  
G Rajeshkumar ◽  
V Hariharan ◽  
TP Sathishkumar ◽  
V Fiore ◽  
T Scalici

Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental condition. The dynamic mechanical properties of the composites loaded with 40% in volume were analyzed by varying the reinforcement size and the load frequency (i.e., 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz). It was found that the glass transition temperature of short fiber-reinforced composites is higher than that of the composite loaded with particles.


2014 ◽  
Vol 36 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Heitor Luiz Ornaghi ◽  
Ademir José Zattera ◽  
Sandro Campos Amico

Sign in / Sign up

Export Citation Format

Share Document