Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers

Cellulose ◽  
2015 ◽  
Vol 22 (3) ◽  
pp. 1743-1752 ◽  
Author(s):  
Han Yang ◽  
Dezhi Chen ◽  
Theo G. M. van de Ven
2021 ◽  
pp. 1-12
Author(s):  
Kannan Kilavan Packiam ◽  
Bharani Murugesan ◽  
Pavithra Mettupalayam Kaliyannan Sundaramoorthy ◽  
Harshini Srinivasan ◽  
Keerthika Dhanasekaran

2019 ◽  
Vol 217 ◽  
pp. 178-189 ◽  
Author(s):  
M. Kathirselvam ◽  
A. Kumaravel ◽  
V.P. Arthanarieswaran ◽  
S.S. Saravanakumar

2020 ◽  
Vol 24 (4) ◽  
pp. 374-379
Author(s):  
Syed Farooq Adil ◽  
Vanita S. Bhat ◽  
Khalid Mujasam Batoo ◽  
Ahamad Imran ◽  
Mohamed E. Assal ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 1415-1419 ◽  
Author(s):  
Yun Hui Xu ◽  
Zhao Fang Du

In order to develop cotton fabric underwear with the health care function, the cotton fiber was modified with the collagen (CMCF) using periodate oxidation method. The aldehyde groups on the glucose chains of the oxidized cotton cellulose were reacted with the amino groups of collagen to obtain the CMCF, and the oxidized cellulose was crosslinked with collagen in aqueous acetic acid media. The effects of collagen concentration, treatment time, reaction temperature, pH value of solution and periodate concentration on the amount of collagen crosslinked on cotton fiber were respectively discussed, and the optimal reaction technology was obtained. XPS characterization of the modified cotton fiber showed a characteristic peak about 400.0–405.0 eV corresponding to collagen, which indicated that the collagen was combined on the surface of cotton fiber. The mechanical properties of the collagen modified cotton fiber were improved. The resulting CMCF is a new natural ecological fiber and has the extensive application as a carrier for the controlled release of drugs.


2016 ◽  
Vol 24 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Meriem Fardioui ◽  
Abdelhamid Stambouli ◽  
Taoufik Gueddira ◽  
Abdelouahed Dahrouch ◽  
Abou El Kacem Qaiss ◽  
...  

1974 ◽  
Vol 143 (2) ◽  
pp. 379-389 ◽  
Author(s):  
Lars-Åke Fransson ◽  
Lars Cöster ◽  
Birgitta Havsmark ◽  
Anders Malmström ◽  
Ingrid Sjöberg

Dermatan sulphate was degraded by testicular hyaluronidase and an oversulphated fraction was isolated by ion-exchange chromatography. This preparation, which contained fairly long segments derived from the non-reducing terminal portion of the molecule, was subjected to periodate oxidation under acidic conditions. The oxidized iduronic acid residues were cleaved by reduction-hydrolysis (Smith-degradation) (Fransson & Carlstedt, 1974) or by alkaline elimination. The oligosaccharides so obtained contained both GlcUA (glucuronic acid) and IdUA-SO4 (sulphated iduronic acid) residues. Copolymeric oligosaccharides obtained after alkaline elimination were cleaved by chondroitinase-AC into disaccharide and higher oligosaccharides. Since the corresponding oligosaccharides obtained by Smith-degradation were unaffected by this enzyme, it was concluded that the carbohydrate sequences were GalNAc-(IdUA-GalNAc)n-GlcUA-GalNAc. The iduronic acid-containing sequences were resistant to digestion with chondroitinase-ABC. It was demonstrated that the presence of unsulphated N-acetylgalactosamine residues in these sequences could be responsible for the observed effect. This information was obtained in an indirect way. Chemically desulphated dermatan sulphate was found to be a poor substrate for the chondroitinase-ABC enzyme. Moreover, digestion with chondroitinase-ABC of chondroitinase-AC-degraded dermatan sulphate released periodate-resistant iduronic acid-containing oligosaccharides. It is concluded that copolymeric sequences of the following structure are present in pig skin dermatan sulphate: [Formula: see text] N-acetylgalactosamine moieties surrounding IdUA-SO4 residues are unsulphated to a large extent.


Sign in / Sign up

Export Citation Format

Share Document