scholarly journals The role of advanced end-use technologies in long-term climate change mitigation: the interlinkage between primary bioenergy and energy end-use

2020 ◽  
Vol 163 (3) ◽  
pp. 1659-1673 ◽  
Author(s):  
Junichi Tsutsui ◽  
Hiromi Yamamoto ◽  
Shogo Sakamoto ◽  
Masahiro Sugiyama

AbstractThe role of advanced end-use technologies has been investigated in multiple series of scenarios using an integrated assessment model BET-GLUE, which comprises an energy-economic module (BET) and a bioenergy-land-use module (GLUE). The scenarios consider different technology assumptions on the availability of bioenergy with carbon capture and storage (BECCS) and end-use efficiencies featuring electrification under a wide range of carbon price trajectories, which start at 1–690 USD/tCO2 in 2030, increase at 4.5%/year, and level off in 2100. This scenario design allows close examination of energy, economic, and environmental implications of different levels of policy stringency and carbon budgets. While improving end-use efficiencies consistently decrease policy costs for a wide range of carbon budgets, the value of BECCS availability in terms of cost reduction is crucial only in a limited range toward lower budgets. Constraints on BECCS, including those indirectly imposed by the limited bioenergy supply, also tend to narrow the lower range of attainable budget levels, indicating technological and economic challenges, although they may have an impact on reducing the total budget including land-use emissions. Overall, the advanced end-use efficiency has a significant effect on the required level of policy stringency for a given climate goal, so that it can compensate for the biomass constraints.

2019 ◽  
Vol 6 (4) ◽  
pp. 107-115 ◽  
Author(s):  
Alexandre C. Köberle

Abstract Purpose of Review Integrated assessment model (IAM) scenarios consistent with Paris Agreement targets involve large negative emission technologies (NETs), mostly bioenergy with carbon capture and storage (BECCS). Such reliance on BECCS implies IAMs assign it a high value. Past analyses on the value of BECCS in IAMs have not explicitly addressed the role of model structure and assumptions as value drivers. This paper examines the extent to which the value of BECCS in IAMs is enhanced by model structure constraints and assumptions. Recent Findings Predominant use of high discount rates (3.5–5%) means models opt for delayed-action strategies for emissions mitigation that lead to high levels of cumulative net-negative emissions, while lower discount rates lead to reduce reliance on NETs. Until recently in the literature, most models limited NET options to only BECCS and afforestation, but introduction of other CDR options can reduce BECCS deployment. Constraints on grid penetration of variable renewable energy (VRE) is a determining factor on the level of BECCS deployment across models, and more constrained grid penetration of VREs leads to more BECCS in electricity generation. Summary This paper concludes BECCS derives significant value not only from the existing structure of IAMs but also from what is not represented in models and by predominant use of high discount rates. Omissions include NETs other than BECCS and deforestation, low-carbon innovation in end-use technologies, grid resilience to intermittent sources, and energy use in agriculture production. As IAMs increasingly endogenize such constraints, the value of BECCS in resulting scenarios is likely to be dampened.


2016 ◽  
Vol 9 (9) ◽  
pp. 3055-3069 ◽  
Author(s):  
Yannick Le Page ◽  
Tris O. West ◽  
Robert Link ◽  
Pralit Patel

Abstract. The Global Change Assessment Model (GCAM) is a global integrated assessment model used to project future societal and environmental scenarios, based on economic modeling and on a detailed representation of food and energy production systems. The terrestrial module in GCAM represents agricultural activities and ecosystems dynamics at the subregional scale, and must be downscaled to be used for impact assessments in gridded models (e.g., climate models). In this study, we present the downscaling algorithm of the GCAM model, which generates gridded time series of global land use and land cover (LULC) from any GCAM scenario. The downscaling is based on a number of user-defined rules and drivers, including transition priorities (e.g., crop expansion preferentially into grasslands rather than forests) and spatial constraints (e.g., nutrient availability). The default parameterization is evaluated using historical LULC change data, and a sensitivity experiment provides insights on the most critical parameters and how their influence changes regionally and in time. Finally, a reference scenario and a climate mitigation scenario are downscaled to illustrate the gridded land use outcomes of different policies on agricultural expansion and forest management. Several features of the downscaling can be modified by providing new input data or changing the parameterization, without any edits to the code. Those features include spatial resolution as well as the number and type of land classes being downscaled, thereby providing flexibility to adapt GCAM LULC scenarios to the requirements of a wide range of models and applications. The downscaling system is version controlled and freely available.


2017 ◽  
Author(s):  
Jana Mintenig ◽  
Mohammad M. Khabbazan ◽  
Hermann Held

Abstract. Cost-Risk Analysis (CRA), a hybrid of Cost-Effectiveness Analysis (CEA) and Cost-Benefit Analysis (CBA), has been proposed as an alternative to CEA as a decision criterion for evaluating climate policy. It weighs mitigation costs against associated risks of violating a predefined temperature guardrail, thereby enabling an analysis of otherwise infeasible temperature targets. Under CEA, delaying climate policy causes infeasibility of temperature targets which was resolved by the assessment under CRA. Indeed, CRA enables a quantitative evaluation of any delay scenario, thereby yielding information of the severeness of postponing climate policy. Alternatively, negative emission technologies have been included in CEA to enlarge the leeway in decision making and postpone infeasibility. This study closes the loop by evaluating the impact of the technology option BECCS (Bioenergy and Carbon Capture and Storage) in light of delayed climate policy under CRA. The work is conducted using the Integrated Assessment Model MIND (Model of Investment and Technological Development). This interplay creates the following insights: An inclusion of BECCS avoids corner solutions that were previously identified for delay scenarios, yielding a larger window of opportunity for action to mitigate climate change. Moreover, it postpones mitigation efforts into the future and removes the pressure to shut down fossil fuel use immediately. Thereby, mitigation-induced welfare losses are reduced substantially. BECSS, when evaluated under CRA, has confirmed well-known results from CEA. However, in contrast to results derived from CEA, mitigation-induced welfare losses decline with delay, while climate risk-induced welfare losses increase with delay by approximately the same magnitude. Hence within CRA, BECCS reduces the welfare effect of delayed climate policy by an order of magnitude. This underlines the crucial role of BECCS for the case of delay, even if one changes the decision-analytic framework from CEA to CRA and thereby softened the temperature target.


2016 ◽  
Author(s):  
Yannick Le Page ◽  
Tris O’Brien West ◽  
Robert Link ◽  
Pralit Patel

Abstract. The Global Change Assessment Model (GCAM) is a global integrated assessment model used to project future societal and environmental scenarios, based on economic modeling and on a detailed representation of food and energy production systems. The terrestrial module in GCAM represents agricultural activities and ecosystems dynamics at the sub-regional scale, and must be downscaled to be used for impact assessments in gridded models (e.g. climate models). In this study, we present the downscaling algorithm of the GCAM model, which generates gridded time series of global land use and land cover (LULC) from any GCAM scenario. The downscaling is based on a number of user-defined rules and drivers, including transition priorities (e.g. crop expansion preferentially into grasslands rather than forests) and spatial constraints (e.g. nutrient availability). The default parameterization is evaluated using historical LULC change data, and a sensitivity experiment provides insights on the most critical parameters and how their influence changes regionally and in time. Finally, a reference scenario and a climate mitigation scenario are downscaled to illustrate the gridded land use outcomes of different policies on agricultural expansion and forest management. Several features of the downscaling can be modified by providing new input data or changing the parameterization, without any edits to the code. Those features include spatial resolution as well as the number and type of land classes being downscaled, thereby providing flexibility to adapt GCAM LULC scenarios to the requirements of a wide range of models and applications. The downscaling system is version controlled and freely available.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Camilla C. N. de Oliveira ◽  
Gerd Angelkorte ◽  
Pedro R. R. Rochedo ◽  
Alexandre Szklo

2020 ◽  
Author(s):  
George C. Hurtt ◽  
Louise Chini ◽  
Ritvik Sahajpal ◽  
Steve Frolking ◽  
Benjamin L. Bodirsky ◽  
...  

Abstract. Human land-use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth surface, with consequences for climate and other ecosystem services. In the future, land-use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community is developing the next generation of advanced Earth System Models (ESMs) to estimate the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, are required as input for these models. Here we present results from the Land-use Harmonization 2 (LUH2) project, with the goal to smoothly connect updated historical reconstructions of land-use with new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land-use patterns, underlying land-use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds off a similar effort from CMIP5, and is now provided at higher resolution (0.25 × 0.25 degree), over a longer time domain (850–2100, with extensions to 2300), with more detail (including multiple crop and pasture types and associated management practices), using more input datasets (including Landsat remote sensing data), updated algorithms (wood harvest and shifting cultivation), and is assessed via a new diagnostic package. The new LUH2 products contain > 50 times the information content of the datasets used in CMIP5, and are designed to enable new and improved estimates of the combined effects of land-use on the global carbon-climate system.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruka Ohashi ◽  
Tomoko Hasegawa ◽  
Akiko Hirata ◽  
Shinichiro Fujimori ◽  
Kiyoshi Takahashi ◽  
...  

AbstractLimiting the magnitude of climate change via stringent greenhouse gas (GHG) mitigation is necessary to prevent further biodiversity loss. However, some strategies to mitigate GHG emission involve greater land-based mitigation efforts, which may cause biodiversity loss from land-use changes. Here we estimate how climate and land-based mitigation efforts interact with global biodiversity by using an integrated assessment model framework to project potential habitat for five major taxonomic groups. We find that stringent GHG mitigation can generally bring a net benefit to global biodiversity even if land-based mitigation is adopted. This trend is strengthened in the latter half of this century. In contrast, some regions projected to experience much growth in land-based mitigation efforts (i.e., Europe and Oceania) are expected to suffer biodiversity loss. Our results support the enactment of stringent GHG mitigation policies in terms of biodiversity. To conserve local biodiversity, however, these policies must be carefully designed in conjunction with land-use regulations and societal transformation in order to minimize the conversion of natural habitats.


2014 ◽  
Vol 7 (6) ◽  
pp. 2545-2555 ◽  
Author(s):  
B. Bond-Lamberty ◽  
K. Calvin ◽  
A. D. Jones ◽  
J. Mao ◽  
P. Patel ◽  
...  

Abstract. Human activities are significantly altering biogeochemical cycles at the global scale, and the scope of these activities will change with both future climate and socioeconomic decisions. This poses a significant challenge for Earth system models (ESMs), which can incorporate land use change as prescribed inputs but do not actively simulate the policy or economic forces that drive land use change. One option to address this problem is to couple an ESM with an economically oriented integrated assessment model, but this is challenging because of the radically different goals and underpinnings of each type of model. This study describes the development and testing of a coupling between the terrestrial carbon cycle of an ESM (CESM) and an integrated assessment (GCAM) model, focusing on how CESM climate effects on the carbon cycle could be shared with GCAM. We examine the best proxy variables to share between the models, and we quantify how carbon flux changes driven by climate, CO2 fertilization, and land use changes (e.g., deforestation) can be distinguished from each other by GCAM. The net primary production and heterotrophic respiration outputs of the Community Land Model (CLM), the land component of CESM, were found to be the most robust proxy variables by which to recalculate GCAM's assumptions of equilibrium ecosystem steady-state carbon. Carbon cycle effects of land use change are spatially limited relative to climate effects, and thus we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. This paper does not present results of a fully coupled simulation but shows, using a series of offline CLM simulations and an additional idealized Monte Carlo simulation, that our CESM–GCAM proxy variables reflect the phenomena that we intend and do not contain erroneous signals due to land use change. By allowing climate effects from a full ESM to dynamically modulate the economic and policy decisions of an integrated assessment model, this work will help link these models in a robust and flexible framework capable of examining two-way interactions between human and Earth system processes.


Sign in / Sign up

Export Citation Format

Share Document