carbon budgets
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 87)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Hongming Yao ◽  
Paul A Montagna ◽  
Michael S Wetz ◽  
Cory J Staryk ◽  
Xinping Hu

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1695
Author(s):  
Chenggang Song ◽  
Fanglin Luo ◽  
Lele Zhang ◽  
Lubei Yi ◽  
Chunyu Wang ◽  
...  

Alpine wetlands sequester large amounts of soil carbon, so it is vital to gain a full understanding of their land-atmospheric CO2 exchanges and how they contribute to regional carbon neutrality; such an understanding is currently lacking for the Qinghai—Tibet Plateau (QTP), which is undergoing unprecedented climate warming. We analyzed two-year (2018–2019) continuous CO2 flux data, measured by eddy covariance techniques, to quantify the carbon budgets of two alpine wetlands (Luanhaizi peatland (LHZ) and Xiaobohu swamp (XBH)) on the northeastern QTP. At an 8-day scale, boosted regression tree model-based analysis showed that variations in growing season CO2 fluxes were predominantly determined by atmospheric water vapor, having a relative contribution of more than 65%. Variations in nongrowing season CO2 fluxes were mainly controlled by site (categorical variable) and topsoil temperature (Ts), with cumulative relative contributions of 81.8%. At a monthly scale, structural equation models revealed that net ecosystem CO2 exchange (NEE) at both sites was regulated more by gross primary productivity (GPP), than by ecosystem respiration (RES), which were both in turn directly controlled by atmospheric water vapor. The general linear model showed that variations in nongrowing season CO2 fluxes were significantly (p < 0.001) driven by the main effect of site and Ts. Annually, LHZ acted as a net carbon source, and NEE, GPP, and RES were 41.5 ± 17.8, 631.5 ± 19.4, and 673.0 ± 37.2 g C/(m2 year), respectively. XBH behaved as a net carbon sink, and NEE, GPP, and RES were –40.9 ± 7.5, 595.1 ± 15.4, and 554.2 ± 7.9 g C/(m2 year), respectively. These distinctly different carbon budgets were primarily caused by the nongrowing season RES being approximately twice as large at LHZ (p < 0.001), rather than by other equivalent growing season CO2 fluxes (p > 0.10). Overall, variations in growing season CO2 fluxes were mainly controlled by atmospheric water vapor, while those of the nongrowing season were jointly determined by site attributes and soil temperatures. Our results highlight the different carbon functions of alpine peatland and alpine swampland, and show that nongrowing season CO2 emissions should be taken into full consideration when upscaling regional carbon budgets. Current and predicted marked winter warming will directly stimulate increased CO2 emissions from alpine wetlands, which will positively feedback to climate change.


Author(s):  
Wim J. van Hoek ◽  
Junjie Wang ◽  
Lauriane Vilmin ◽  
Arthur H.W. Beusen ◽  
José M. Mogollón ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cécile Cathalot ◽  
Erwan G. Roussel ◽  
Antoine Perhirin ◽  
Vanessa Creff ◽  
Jean-Pierre Donval ◽  
...  

AbstractCarbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemoautotrophic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gCm−2y−1) compared to the surrounding seawater could lead to 0.05 GtCy−1 of C-biomass produced through chemoorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.


2021 ◽  
Author(s):  
Olexandr Balyk ◽  
James Glynn ◽  
Vahid Aryanpur ◽  
Ankita Gaur ◽  
Jason McGuire ◽  
...  

Abstract. Ireland has significantly increased its climate mitigation ambition, with a recent government commitment to reduce greenhouse-gases by an average of 7 % per year in the period to 2030 and a “net-zero” target for 2050, underpinned by a series of five-year carbon budgets. Energy systems optimisation modelling (ESOM) is a widely-used tool to inform pathways to address long-term energy challenges. This article describes a new ESOM developed to inform Ireland's energy system decarbonisation challenge. The TIMES-Ireland Model (TIM) is an optimisation model of the Irish energy system, which calculates the cost-optimal fuel and technology mix to meet future energy service demands in the transport, buildings, industry and agriculture sectors, while respecting constraints in greenhouse-gas emissions, primary energy resources and feasible deployment rates. TIM is developed to take into account Ireland's unique energy system context, including a very high potential for offshore wind energy and the challenge of integrating this on a relatively isolated grid, a very ambitious decarbonisation target in the period to 2030, the policy need to inform five-year carbon budgets to meet policy targets, and the challenge of decarbonising heat in the context of low building stock thermal efficiency and high reliance on fossil fuels. To that end, model features of note include “future proofing” with flexible temporal and spatial definitions, with a possible hourly time resolution, unit commitment and capacity expansion features in power sector, residential and passenger transport underpinned by detailed bottom-up sectoral models, cross-model harmonisation and soft-linking with demand and macro models. The paper also outlines a priority list of future model developments to better meet the challenge of deeply decarbonising energy supply and demand, taking into account equity, cost-effectiveness and technical feasibility. To support transparency and openness in decision-making, TIM is available to download under a Creative Commons licence.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012172
Author(s):  
Y D Priore ◽  
T Jusselme ◽  
G Habert

Abstract In order to limit global warming, remaining carbon budgets have been defined by the IPCC in 2018. In this context translating global goals to local realities implicates a set of different challenges. Standardized methodologies of allocation can support a target-cascading process. On the other hand, local strategies and norms are not currently designed to directly respond to limited carbon budgets in a 2050 horizon. The life cycle assessment of buildings implicates an intricate cross-industry and cross-border carbon accounting. For these reasons, effective and aligned carbon targets are needed to support and guide all actors in the construction sector. This research aims at addressing these challenges by developing a new methodology of allocation of a global carbon budget at different scales using the Swiss built environment as a case study. This approach allows the assessment of current best practices in regards to limited carbon budgets. Results show misalignment of global goals with current practices at all levels and present the magnitude of effort that would be required to have a chance to limit global warming to 1.5°C.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Stuart Jenkins ◽  
Michelle Cain ◽  
Pierre Friedlingstein ◽  
Nathan Gillett ◽  
Tristram Walsh ◽  
...  

AbstractThe IPCC Special Report on 1.5 °C concluded that anthropogenic global warming is determined by cumulative anthropogenic CO2 emissions and the non-CO2 radiative forcing level in the decades prior to peak warming. We quantify this using CO2-forcing-equivalent (CO2-fe) emissions. We produce an observationally constrained estimate of the Transient Climate Response to cumulative carbon Emissions (TCRE), giving a 90% confidence interval of 0.26–0.78 °C/TtCO2, implying a remaining total CO2-fe budget from 2020 to 1.5 °C of 350–1040 GtCO2-fe, where non-CO2 forcing changes take up 50 to 300 GtCO2-fe. Using a central non-CO2 forcing estimate, the remaining CO2 budgets are 640, 545, 455 GtCO2 for a 33, 50 or 66% chance of limiting warming to 1.5 °C. We discuss the impact of GMST revisions and the contribution of non-CO2 mitigation to remaining budgets, determining that reporting budgets in CO2-fe for alternative definitions of GMST, displaying CO2 and non-CO2 contributions using a two-dimensional presentation, offers the most transparent approach.


2021 ◽  
Vol 18 (16) ◽  
pp. 4791-4816
Author(s):  
Stuart A. Vyse ◽  
Ulrike Herzschuh ◽  
Gregor Pfalz ◽  
Lyudmila A. Pestryakova ◽  
Bernhard Diekmann ◽  
...  

Abstract. Lakes act as important sinks for inorganic and organic sediment components. However, investigations of sedimentary carbon budgets within glacial lakes are currently absent from Arctic Siberia. The aim of this paper is to provide the first reconstruction of accumulation rates, sediment and carbon budgets from a lacustrine sediment core from Lake Rauchuagytgyn, Chukotka (Arctic Siberia). We combined multiple sediment biogeochemical and sedimentological parameters from a radiocarbon-dated 6.5 m sediment core with lake basin hydroacoustic data to derive sediment stratigraphy, sediment volumes and infill budgets. Our results distinguished three principal sediment and carbon accumulation regimes that could be identified across all measured environmental proxies including early Marine Isotope Stage 2 (MIS2) (ca. 29–23.4 ka cal BP), mid-MIS2–early MIS1 (ca. 23.4–11.69 ka cal BP) and the Holocene (ca. 11.69–present). Estimated organic carbon accumulation rates (OCARs) were higher within Holocene sediments (average 3.53 g OC m−2 a−1) than Pleistocene sediments (average 1.08 g OC m−2 a−1) and are similar to those calculated for boreal lakes from Quebec and Finland and Lake Baikal but significantly lower than Siberian thermokarst lakes and Alberta glacial lakes. Using a bootstrapping approach, we estimated the total organic carbon pool to be 0.26 ± 0.02 Mt and a total sediment pool of 25.7 ± 1.71 Mt within a hydroacoustically derived sediment volume of ca. 32 990 557 m3. The total organic carbon pool is substantially smaller than Alaskan yedoma, thermokarst lake sediments and Alberta glacial lakes but shares similarities with Finnish boreal lakes. Temporal variability in sediment and carbon accumulation dynamics at Lake Rauchuagytgyn is controlled predominantly by palaeoclimate variation that regulates lake ice-cover dynamics and catchment glacial, fluvial and permafrost processes through time. These processes, in turn, affect catchment and within-lake primary productivity as well as catchment soil development. Spatial differences compared to other lake systems at a trans-regional scale likely relate to the high-latitude, mountainous location of Lake Rauchuagytgyn.


Sign in / Sign up

Export Citation Format

Share Document