A space-time discontinuous Galerkin method applied to single-phase flow in porous media

2008 ◽  
Vol 12 (4) ◽  
pp. 525-539 ◽  
Author(s):  
Zhiyun Chen ◽  
Holger Steeb ◽  
Stefan Diebels
Author(s):  
Guang Dong ◽  
Yulan Song

The topology optimization method is extended to solve a single phase flow in porous media optimization problem based on the Two Point Flux Approximation model. In particular, this paper discusses both strong form and matrix form equations for the flow in porous media. The design variables and design objective are well defined for this topology optimization problem, which is based on the Solid Isotropic Material with Penalization approach. The optimization problem is solved by the Generalized Sequential Approximate Optimization algorithm iteratively. To show the effectiveness of the topology optimization in solving the single phase flow in porous media, the examples of two-dimensional grid cell TPFA model with impermeable regions as constrains are presented in the numerical example section.


2019 ◽  
Vol 213 ◽  
pp. 02011
Author(s):  
Jan Česenek

The article is concerned with the numerical simulation of the compressible turbulent gas flow through the porous media using space-time discontinuous Galerkin method.The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The flow through the porous media is characterized by the loss of momentum. This RANS system is equipped with two-equation k-omega turbulence model. The discretization of these two systems is carried out separately by the space-time discontinuous Galerkin method. This method is based on the piecewise polynomial discontinuous approximation of the sought solution in space and in time. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.


Sign in / Sign up

Export Citation Format

Share Document