pore network
Recently Published Documents


TOTAL DOCUMENTS

1001
(FIVE YEARS 337)

H-INDEX

57
(FIVE YEARS 10)

Author(s):  
Lili Yu ◽  
Wei-Lun Hsu ◽  
Jubair A. Shamim ◽  
Hirofumi Daiguji

Geoderma ◽  
2022 ◽  
Vol 411 ◽  
pp. 115674
Author(s):  
Erin C. Rooney ◽  
Vanessa L. Bailey ◽  
Kaizad F. Patel ◽  
Maria Dragila ◽  
Anil K. Battu ◽  
...  

Author(s):  
Nerine Joewondo ◽  
Valeria Garbin ◽  
Ronny Pini

AbstractUnderstanding the evolution of solute concentration gradients underpins the prediction of porous media processes limited by mass transfer. Here, we present the development of a mathematical model that describes the dissolution of spherical bubbles in two-dimensional regular pore networks. The model is solved numerically for lattices with up to 169 bubbles by evaluating the role of pore network connectivity, vacant lattice sites and the initial bubble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution time of the lattice, and the strength of the phenomenon depends on the network connectivity. The extension of the final dissolution time relative to the unbounded (bulk) case follows the power-law function, $${B^k/\ell }$$ B k / ℓ , where the constant $$\ell$$ ℓ is the inter-bubble spacing, B is the number of bubbles, and the exponent k depends on the network connectivity. The solute concentration field is both the consequence and a factor affecting bubble dissolution or growth. The geometry of the pore network perturbs the inward propagation of the dissolution front and can generate vacant sites within the bubble lattice. This effect is enhanced by increasing the lattice size and decreasing the network connectivity, yielding strongly nonuniform solute concentration fields. Sparse bubble lattices experience decreased collective effects, but they feature a more complex evolution, because the solute concentration field is nonuniform from the outset.


Author(s):  
Ryan L. Payton ◽  
Yizhuo Sun ◽  
Domenico Chiarella ◽  
Andrew Kingdon

Abstract Mineral trapping (MT)is the most secure method of sequestering carbon for geologically significant periods of time. The processes behind MT fundamentally occur at the pore scale, therefore understanding which factors control MT at this scale is crucial. We present a finite elements advection–diffusion–reaction numerical model which uses true pore geometry model domains generated from $$\upmu$$ μ CT imaging. Using this model, we investigate the impact of pore geometry features such as branching, tortuosity and throat radii on the distribution and occurrence of carbonate precipitation in different pore networks over 2000 year simulated periods. We find evidence that a greater tortuosity, greater degree of branching of a pore network and narrower pore throats are detrimental to MT and contribute to the risk of clogging and reduction of connected porosity. We suggest that a tortuosity of less than 2 is critical in promoting greater precipitation per unit volume and should be considered alongside porosity and permeability when assessing reservoirs for geological carbon storage (GCS). We also show that the dominant influence on precipitated mass is the Damköhler number, or reaction rate, rather than the availability of reactive minerals, suggesting that this should be the focus when engineering effective subsurface carbon storage reservoirs for long term security. Article Highlights The rate of reaction has a stronger influence on mineral precipitation than the amount of available reactant. In a fully connected pore network preferential flow pathways still form which results in uneven precipitate distribution. A pore network tortuosity of <2 is recommended to facilitate greater carbon mineralisation.


2022 ◽  
Vol 3 ◽  
Author(s):  
Amir H. Kohanpur ◽  
Yu Chen ◽  
Albert J. Valocchi

Direct numerical simulation and pore-network modeling are common approaches to study the physics of two-phase flow through natural rocks. For assessment of the long-term performance of geological sequestration of CO2, it is important to model the full drainage-imbibition cycle to provide an accurate estimate of the trapped CO2. While direct numerical simulation using pore geometry from micro-CT rock images accurately models two-phase flow physics, it is computationally prohibitive for large rock volumes. On the other hand, pore-network modeling on networks extracted from micro-CT rock images is computationally efficient but utilizes simplified physics in idealized geometric pore elements. This study uses the lattice-Boltzmann method for direct numerical simulation of CO2-brine flow in idealized pore elements to develop a new set of pore-level flow models for the pore-body filling and snap-off events in pore-network modeling of imbibition. Lattice-Boltzmann simulations are conducted on typical idealized pore-network configurations, and the interface evolution and local capillary pressure are evaluated to develop modified equations of local threshold capillary pressure of pore elements as a function of shape factor and other geometrical parameters. The modified equations are then incorporated into a quasi-static pore-network flow solver. The modified model is applied on extracted pore-network of sandstone samples, and saturation of residual trapped CO2 is computed for a drainage-imbibition cycle. The modified model yields different statistics of pore-level events compared with the original model; in particular, the occurrence of snap-off in pore-throats is reduced resulting in a more frontal displacement pattern along the main injection direction. Compared to the original model, the modified model is in closer agreement with the residual trapped CO2 obtained from core flow experiments and direct numerical simulation.


CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105759
Author(s):  
N.C. Womack ◽  
I. Piccoli ◽  
C. Camarotto ◽  
A. Squartini ◽  
G. Guerrini ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Nadeem Ahmed Sheikh ◽  
Irfan Ullah ◽  
Muzaffar Ali

Carbon dioxide (CO2) storage in natural rocks is an important strategy for reducing and capturing greenhouse gas emissions in the atmosphere. The amount of CO2 stored in a natural reservoir such as natural rocks is the major challenge for any economically viable CO2 storage. The intricate nature of the porous media and the estimates of the replacement of residing aqueous media with the invading CO2 is the challenge. The current study uses MATLAB to construct a similar porous network model for simulation of complex porous storage. The model is designed to mimic the overall properties of the natural porous media in terms of permeability, porosity and inter-pore connectivity. Here a dynamic pore network is simulated and validated, firstly in the case of a porous network with one fluid invading empty network. Subsequently, the simulations for an invading fluid (CO2) capturing the porous media with filled aqueous brine solution are also carried out in a dynamic fashion. This resembles the actual storage process of CO2 sequestration in natural rocks. While the sensitivity analysis suggests that the differential pressure and porosity have a direct effect on saturation, increasing differential pressure or porosity increases the saturation of CO2 storage. The results for typically occurring rocks in Pakistan are also studies and related with the findings of the study.


Sign in / Sign up

Export Citation Format

Share Document