scholarly journals Randomized maximum likelihood based posterior sampling

Author(s):  
Yuming Ba ◽  
Jana de Wiljes ◽  
Dean S. Oliver ◽  
Sebastian Reich

AbstractMinimization of a stochastic cost function is commonly used for approximate sampling in high-dimensional Bayesian inverse problems with Gaussian prior distributions and multimodal posterior distributions. The density of the samples generated by minimization is not the desired target density, unless the observation operator is linear, but the distribution of samples is useful as a proposal density for importance sampling or for Markov chain Monte Carlo methods. In this paper, we focus on applications to sampling from multimodal posterior distributions in high dimensions. We first show that sampling from multimodal distributions is improved by computing all critical points instead of only minimizers of the objective function. For applications to high-dimensional geoscience inverse problems, we demonstrate an efficient approximate weighting that uses a low-rank Gauss-Newton approximation of the determinant of the Jacobian. The method is applied to two toy problems with known posterior distributions and a Darcy flow problem with multiple modes in the posterior.

2021 ◽  
Vol 47 (2) ◽  
pp. 1-34
Author(s):  
Umberto Villa ◽  
Noemi Petra ◽  
Omar Ghattas

We present an extensible software framework, hIPPYlib, for solution of large-scale deterministic and Bayesian inverse problems governed by partial differential equations (PDEs) with (possibly) infinite-dimensional parameter fields (which are high-dimensional after discretization). hIPPYlib overcomes the prohibitively expensive nature of Bayesian inversion for this class of problems by implementing state-of-the-art scalable algorithms for PDE-based inverse problems that exploit the structure of the underlying operators, notably the Hessian of the log-posterior. The key property of the algorithms implemented in hIPPYlib is that the solution of the inverse problem is computed at a cost, measured in linearized forward PDE solves, that is independent of the parameter dimension. The mean of the posterior is approximated by the MAP point, which is found by minimizing the negative log-posterior with an inexact matrix-free Newton-CG method. The posterior covariance is approximated by the inverse of the Hessian of the negative log posterior evaluated at the MAP point. The construction of the posterior covariance is made tractable by invoking a low-rank approximation of the Hessian of the log-likelihood. Scalable tools for sample generation are also discussed. hIPPYlib makes all of these advanced algorithms easily accessible to domain scientists and provides an environment that expedites the development of new algorithms.


2021 ◽  
Author(s):  
Ziwei Zhu ◽  
Xudong Li ◽  
Mengdi Wang ◽  
Anru Zhang

Taming high-dimensional Markov models In “Learning Markov models via low-rank optimization”, Z. Zhu, X. Li, M. Wang, and A. Zhang focus on learning a high-dimensional Markov model with low-dimensional latent structure from a single trajectory of states. To overcome the curse of high dimensions, the authors propose to equip the standard MLE (maximum-likelihood estimation) with either nuclear norm regularization or rank constraint. They show that both approaches can estimate the full transition matrix accurately using a trajectory of length that is merely proportional to the number of states. To solve the rank-constrained MLE, which is a nonconvex problem, the authors develop a new DC (difference) programming algorithm. Finally, they apply the proposed methods to analyze taxi trips on the Manhattan island and partition the island based on the destination preference of customers; this partition can help balance supply and demand of taxi service and optimize the allocation of traffic resources.


2018 ◽  
Vol 6 (3) ◽  
pp. 1076-1100 ◽  
Author(s):  
D. Andrew Brown ◽  
Arvind Saibaba ◽  
Sarah Vallélian

2011 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Ivan Gavrilyuk ◽  
Boris Khoromskij ◽  
Eugene Tyrtyshnikov

Abstract In the recent years, multidimensional numerical simulations with tensor-structured data formats have been recognized as the basic concept for breaking the "curse of dimensionality". Modern applications of tensor methods include the challenging high-dimensional problems of material sciences, bio-science, stochastic modeling, signal processing, machine learning, and data mining, financial mathematics, etc. The guiding principle of the tensor methods is an approximation of multivariate functions and operators with some separation of variables to keep the computational process in a low parametric tensor-structured manifold. Tensors structures had been wildly used as models of data and discussed in the contexts of differential geometry, mechanics, algebraic geometry, data analysis etc. before tensor methods recently have penetrated into numerical computations. On the one hand, the existing tensor representation formats remained to be of a limited use in many high-dimensional problems because of lack of sufficiently reliable and fast software. On the other hand, for moderate dimensional problems (e.g. in "ab-initio" quantum chemistry) as well as for selected model problems of very high dimensions, the application of traditional canonical and Tucker formats in combination with the ideas of multilevel methods has led to the new efficient algorithms. The recent progress in tensor numerical methods is achieved with new representation formats now known as "tensor-train representations" and "hierarchical Tucker representations". Note that the formats themselves could have been picked up earlier in the literature on the modeling of quantum systems. Until 2009 they lived in a closed world of those quantum theory publications and never trespassed the territory of numerical analysis. The tremendous progress during the very recent years shows the new tensor tools in various applications and in the development of these tools and study of their approximation and algebraic properties. This special issue treats tensors as a base for efficient numerical algorithms in various modern applications and with special emphases on the new representation formats.


2021 ◽  
Vol 427 ◽  
pp. 110055
Author(s):  
Aaron Myers ◽  
Alexandre H. Thiéry ◽  
Kainan Wang ◽  
Tan Bui-Thanh

Sign in / Sign up

Export Citation Format

Share Document