Application of Tikhonov’s regularization method to solve inverse problems for two population models

2007 ◽  
Vol 18 (1) ◽  
pp. 1-9
Author(s):  
A. S. Makeev
2018 ◽  
Vol 26 (2) ◽  
pp. 277-286 ◽  
Author(s):  
Jens Flemming

AbstractVariational source conditions proved to be useful for deriving convergence rates for Tikhonov’s regularization method and also for other methods. Up to now, such conditions have been verified only for few examples or for situations which can be also handled by classical range-type source conditions. Here we show that for almost every ill-posed inverse problem variational source conditions are satisfied. Whether linear or nonlinear, whether Hilbert or Banach spaces, whether one or multiple solutions, variational source conditions are a universal tool for proving convergence rates.


2014 ◽  
Vol 108 ◽  
pp. 176-185 ◽  
Author(s):  
J.L. Fernández-Martínez ◽  
J.L.G. Pallero ◽  
Z. Fernández-Muñiz ◽  
L.M. Pedruelo-González

2019 ◽  
Vol 62 (3) ◽  
pp. 445-455
Author(s):  
Johannes Schwab ◽  
Stephan Antholzer ◽  
Markus Haltmeier

Abstract Deep learning and (deep) neural networks are emerging tools to address inverse problems and image reconstruction tasks. Despite outstanding performance, the mathematical analysis for solving inverse problems by neural networks is mostly missing. In this paper, we introduce and rigorously analyze families of deep regularizing neural networks (RegNets) of the form $$\mathbf {B}_\alpha + \mathbf {N}_{\theta (\alpha )} \mathbf {B}_\alpha $$Bα+Nθ(α)Bα, where $$\mathbf {B}_\alpha $$Bα is a classical regularization and the network $$\mathbf {N}_{\theta (\alpha )} \mathbf {B}_\alpha $$Nθ(α)Bα is trained to recover the missing part $${\text {Id}}_X - \mathbf {B}_\alpha $$IdX-Bα not found by the classical regularization. We show that these regularizing networks yield a convergent regularization method for solving inverse problems. Additionally, we derive convergence rates (quantitative error estimates) assuming a sufficient decay of the associated distance function. We demonstrate that our results recover existing convergence and convergence rates results for filter-based regularization methods as well as the recently introduced null space network as special cases. Numerical results are presented for a tomographic sparse data problem, which clearly demonstrate that the proposed RegNets improve classical regularization as well as the null space network.


2016 ◽  
Vol 833 ◽  
pp. 170-175 ◽  
Author(s):  
Andrew Sia Chew Chie ◽  
Kismet Anak Hong Ping ◽  
Yong Guang ◽  
Ng Shi Wei ◽  
Nordiana Rajaee

The inverse scattering in time domain known as Forward-Backward Time-Stepping (FBTS) technique is applied to determine the sizes, shape and location of the embedded objects. Tikhonov’s regularization method has been proposed in order to improve or solve the ill-posed of FBTS inverse scattering problem. The reconstructed results showed that FBTS technique can detect the presence of embedded objects. The reconstructed results of FBTS technique utilizing with the Tikhonov’s regularization method shown better results than the results only applied FBTS technique. Tikhonov’s regularization combined with FBTS technique to improve the quality of image reconstruction.


Sign in / Sign up

Export Citation Format

Share Document