scholarly journals Binary Hamming codes and Boolean designs

Author(s):  
Giovanni Falcone ◽  
Marco Pavone

AbstractIn this paper we consider a finite-dimensional vector space $${\mathcal {P}}$$ P over the Galois field $${\text {GF}}(2),$$ GF ( 2 ) , and the family $${\mathcal {B}}_k$$ B k (respectively, $${\mathcal {B}}_k^*$$ B k ∗ ) of all the k-sets of elements of $$\mathcal {P}$$ P (respectively, of $${\mathcal {P}}^*= {\mathcal {P}} \setminus \{0\}$$ P ∗ = P \ { 0 } ) summing up to zero. We compute the parameters of the 3-design $$({\mathcal {P}},{\mathcal {B}}_k)$$ ( P , B k ) for any (necessarily even) k, and of the 2-design $$({\mathcal {P}}^{*},{\mathcal {B}}_k^{*})$$ ( P ∗ , B k ∗ ) for any k. Also, we find a new proof for the weight distribution of the binary Hamming code. Moreover, we find the automorphism groups of the above designs by characterizing the permutations of $${\mathcal {P}}$$ P , respectively of $${\mathcal {P}}^*$$ P ∗ , that induce permutations of $${\mathcal {B}}_k$$ B k , respectively of $${\mathcal {B}}_k^*.$$ B k ∗ . In particular, this allows one to relax the definitions of the permutation automorphism groups of the binary Hamming code and of the extended binary Hamming code as the groups of permutations that preserve just the codewords of a given Hamming weight.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Giovanni Falcone ◽  
Marco Pavone

AbstractIn this paper, we consider a finite-dimensional vector space {{\mathcal{P}}} over the Galois field {\operatorname{GF}(p)}, with p being an odd prime, and the family {{\mathcal{B}}_{k}^{x}} of all k-sets of elements of {\mathcal{P}} summing up to a given element x. The main result of the paper is the characterization, for {x=0}, of the permutations of {\mathcal{P}} inducing permutations of {{\mathcal{B}}_{k}^{0}} as the invertible linear mappings of the vector space {\mathcal{P}} if p does not divide k, and as the invertible affinities of the affine space {\mathcal{P}} if p divides k. The same question is answered also in the case where the elements of the k-sets are required to be all nonzero, and, in fact, the two cases prove to be intrinsically inseparable.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


1995 ◽  
Vol 138 ◽  
pp. 113-140 ◽  
Author(s):  
E. De Negri ◽  
G. Valla

Let k be an infinite field and A a standard G-algebra. This means that there exists a positive integer n such that A = R/I where R is the polynomial ring R := k[Xv …, Xn] and I is an homogeneous ideal of R. Thus the additive group of A has a direct sum decomposition A = ⊕ At where AiAj ⊆ Ai+j. Hence, for every t ≥ 0, At is a finite-dimensional vector space over k. The Hilbert Function of A is defined by


Author(s):  
M. Yazi

We associate a covering relation to the usual order relation defined in the set of all idempotent endomorphisms (projections) of a finite-dimensional vector space. A characterization is given of it. This characterization makes this order an order verifying the Jordan-Dedekind chain condition. We give also a property for certain finite families of this order. More precisely, the family of parts intervening in the linear representation of diagonalizable endomorphism, that is, the orthogonal families forming a decomposition of the identity endomorphism.


2009 ◽  
Vol 20 (11) ◽  
pp. 1347-1362 ◽  
Author(s):  
LEANDRO CAGLIERO ◽  
NADINA ROJAS

Given a Lie algebra 𝔤 over a field of characteristic zero k, let μ(𝔤) = min{dim π : π is a faithful representation of 𝔤}. Let 𝔥m be the Heisenberg Lie algebra of dimension 2m + 1 over k and let k [t] be the polynomial algebra in one variable. Given m ∈ ℕ and p ∈ k [t], let 𝔥m, p = 𝔥m ⊗ k [t]/(p) be the current Lie algebra associated to 𝔥m and k [t]/(p), where (p) is the principal ideal in k [t] generated by p. In this paper we prove that [Formula: see text]. We also prove a result that gives information about the structure of a commuting family of operators on a finite dimensional vector space. From it is derived the well-known theorem of Schur on maximal abelian subalgebras of 𝔤𝔩(n, k ).


Sign in / Sign up

Export Citation Format

Share Document