scholarly journals Application of non-animal–inspired evolutionary algorithms to reservoir operation: an overview

Author(s):  
Mahsa Jahandideh-Tehrani ◽  
Omid Bozorg-Haddad ◽  
Hugo A. Loáiciga
2017 ◽  
Vol 67 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Mohammad Ehteram ◽  
Hojat Karami ◽  
Sayed-Farhad Mousavi ◽  
Saeed Farzin ◽  
Ozgur Kisi

Data in Brief ◽  
2020 ◽  
Vol 29 ◽  
pp. 105048 ◽  
Author(s):  
Saeid Akbarifard ◽  
Mohammad Reza Sharifi ◽  
Kourosh Qaderi

2018 ◽  
Vol 20 (2) ◽  
pp. 332-355 ◽  
Author(s):  
Mohammad Ehteram ◽  
Sayed Farhad Mousavi ◽  
Hojat Karami ◽  
Saeed Farzin ◽  
Vijay P. Singh ◽  
...  

Abstract This study investigated reservoir operation under climate change for a base period (1981–2000) and future period (2011–2030). Different climate change models, based on A2 scenario, were used and the HAD-CM3 model, considering uncertainty, among other climate change models was found to be the best model. For the Dez basin in Iran, considered as a case study, the climate change models predicted increasing temperature from 1.16 to 2.5°C and decreasing precipitation for the future period. Also, runoff volume for the basin would decrease and irrigation demand for the downstream consumption would increase for the future period. A hybrid framework (optimization-climate change) was used for reservoir operation and the bat algorithm was used for minimization of irrigation deficit. A genetic algorithm and a particle swarm algorithm were selected for comparison with the bat algorithm. The reliability, resiliency, and vulnerability indices, based on a multi-criteria model, were used to select the base method for reservoir operation. Results showed the volume of water to be released for the future period, based on all evolutionary algorithms used, was less than for the base period, and the bat algorithm with high-reliability index and low vulnerability index performed better among other evolutionary algorithms.


Author(s):  
Salman Sharifazari ◽  
Mahmood Sadat-Noori ◽  
Habibeh Rahimi ◽  
Danial Khojasteh ◽  
William Glamore

Author(s):  
Jian-Ping Suen ◽  
Edwin E. Herricks ◽  
J. Wayland Eheart ◽  
Fi-John Chang

2020 ◽  
Vol 2020 (1) ◽  
pp. 105-108
Author(s):  
Ali Alsam

Vision is the science that informs us about the biological and evolutionary algorithms that our eyes, opticnerves and brains have chosen over time to see. This article is an attempt to solve the problem of colour to grey conversion, by borrowing ideas from vision science. We introduce an algorithm that measures contrast along the opponent colour directions and use the results to combine a three dimensional colour space into a grey. The results indicate that the proposed algorithm competes with the state of art algorithms.


Sign in / Sign up

Export Citation Format

Share Document