Spatial variability and delineation of management zones based on soil micronutrient status in apple orchard soils of Kashmir valley, India

2021 ◽  
Vol 193 (12) ◽  
Author(s):  
Javaid M. Dad ◽  
Mifta Ul Shafiq
2021 ◽  
Vol 296 ◽  
pp. 113243
Author(s):  
Arijit Barman ◽  
Parvender Sheoran ◽  
Rajender Kumar Yadav ◽  
Ramesh Abhishek ◽  
Raman Sharma ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 286 ◽  
Author(s):  
Guillaume Létourneau ◽  
Jean Caron

Improvements in water productivity are of primary importance for maintaining agricultural productivity and sustainability. Water potential-based irrigation management has proven effective for this purpose with many different crops, including strawberries. However, problems related to spatial variability of soil properties and irrigation efficiency were reported when applying this management method to strawberries in soils with rock fragments. In this study, a field-scale experiment was performed to evaluate the impacts of three irrigation management scales and a pulsed water application method on strawberry yield and water productivity. An analytical solution to Richards’ equation was also used to establish critical soil water potentials for this crop and evaluate the effects of the variability in the soil properties. Results showed that spatial variability of soil properties at the experimental site was important but not enough to influence crop response to irrigation practices. The studied properties did not present any spatial structure that could allow establishing specific management zones. A four-fold reduction in the size of the irrigation management zones had no effect on yield and increased the water applications. Pulsed application led to significant yield (22%) and water productivity (36%) increases compared with the standard water application method used by the producer at the experimental site.


2013 ◽  
Vol 90 ◽  
pp. 119-130 ◽  
Author(s):  
Katerina Aggelopooulou ◽  
Annamaria Castrignanò ◽  
Theofanis Gemtos ◽  
Daniela De Benedetto

2015 ◽  
Vol 35 (6) ◽  
pp. 1160-1171
Author(s):  
Luciano Gebler ◽  
Celia R. Grego ◽  
Abel L. Vieira ◽  
Leonardo da R. Kuse

ABSTRACT Precision agriculture adoption in Brazilian apple orchards is still incipient. This study aimed at evaluating the spatial variability of certain soil properties as soil density, soil penetration resistance, electrical conductivity, yield, and fruit quality in an apple orchard through digital mapping, as well as assessing the correlation between these factors by means of geostatistics, establishing management zones. Forty representative points were set within 2.5 hectares of apple orchard, wherein soil samples were collected and analyzed, besides measurements of fruit quality (Brix degree, size or diameter, pulp firmness and color) to generate an overall index quality. We concluded that the fruit quality indexes, when isolated, did not show strong spatial dependence, unlike the index of fruit quality (FQI), derived from a combination of these parameters, allowing orchard planning according to management zones based on quality.


2015 ◽  
Vol 154 (2) ◽  
pp. 273-286 ◽  
Author(s):  
H. U. FARID ◽  
A. BAKHSH ◽  
N. AHMAD ◽  
A. AHMAD ◽  
Z. MAHMOOD-KHAN

SUMMARYDelineating site-specific management zones within fields can be helpful in addressing spatial variability effects for adopting precision farming practices. A 3-year (2008/09 to 2010/11) field study was conducted at the Postgraduate Agricultural Research Station, University of Agriculture, Faisalabad, Pakistan, to identify the most important soil and landscape attributes influencing wheat grain yield, which can be used for delineating management zones. A total of 48 soil samples were collected from the top 300 mm of soil in 8-ha experimental field divided into regular grids of 24 × 67 m prior to sowing wheat. Soil and landscape attributes such as elevation, % of sand, silt and clay by volume, soil electrical conductivity (EC), pH, soil nitrogen (N) and soil phosphorus (P) were included in the analysis. Artificial neural network (ANN) analysis showed that % sand, % clay, elevation, soil N and soil EC were important variables for delineating management zones. Different management zone schemes ranging from three to six were developed and evaluated based on performance indicators using Management Zone Analyst (MZA V0·1) software. The fuzziness performance index (FPI) and normalized classification entropy NCE indices showed minimum values for a four management zone scheme, indicating its appropriateness for the experimental field. The coefficient of variation values of soil and landscape attributes decreased for each management zone within the four management zone scheme compared to the entire field, which showed improved homogeneity. The evaluation of the four management zone scheme using normalized wheat grain yield data showed distinct means for each management zone, verifying spatial variability effects and the need for its management. The results indicated that the approach based on ANN and MZA software analysis can be helpful in delineating management zones within the field, to promote precision farming practices effectively.


Sign in / Sign up

Export Citation Format

Share Document