A review of one aspect of the thermal-explosion theory

2006 ◽  
Vol 56 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Ahmad R. Shouman

In thermal explosion theory it is usually impossible analytically, and sometimes a substantial task numerically, to locate the ambient temperature at which transition from discontinuous to continuous behaviour occurs. It is possible to establish analytically a lower bound that is remarkably close to the numerically computed value.


1973 ◽  
Vol 51 (23) ◽  
pp. 4001-4003 ◽  
Author(s):  
Huw O. Pritchard ◽  
Brian J. Tyler

Thermal explosion limits have been measured in the temperature range 285–351 °C for methyl isocyanide and at 351 °C for mixtures of methyl isocyanide and methyl cyanide. We suggest that the methyl isocyanide isomerization is potentially the best reaction system against which to test thermal explosion theories, but at the present time certain kinetic, thermochemical, and thermodynamic data are not available with sufficient accuracy.


1964 ◽  
Vol 8 (4) ◽  
pp. 342-343 ◽  
Author(s):  
J. Adler ◽  
J.W. Enig

The Sal’nikov thermokinetic oscillator is studied in the limiting case where the dimensionless heat capacity tends to zero. This is equivalent to the ‘no fuel consumption’ approximation in classical thermal explosion theory and is equally revealing in that many exact results can be obtained by simple algebraic methods. Regions in parameter space are found where, although the system is asymptotically stable, a large single excursion occurs before the steady state is approached. These regions border the region of oscillations which in the limiting case are of the relaxation type. All the interesting behaviour requires RT / E < 1/4, an obvious parallel with thermal explosion theory. The unstable limit cycles that occur in the Sal’nikov oscillator disappear in this limiting case. However, the requirements for an unstable limit cycle to exist in the ‘relaxation’ limit are discussed. The homoclinic bifurcation in the limiting case is also examined and it is shown that this bifurcation can (in theory) be calculated exactly. In addition, an extension to the Sal’nikov oscillator scheme in a closed system to include fuel consumption is studied both numerically and in a limiting case. It is shown that the full scheme exhibits finite trains of almost periodic behaviour before monotonically approaching equilibrium.


Sign in / Sign up

Export Citation Format

Share Document