Seismic Passive Earth Pressure Behind Non Vertical Wall with Composite Failure Mechanism: Pseudo-Dynamic Approach

2010 ◽  
Vol 29 (3) ◽  
pp. 363-373 ◽  
Author(s):  
Priyanka Ghosh ◽  
Sreevalsa Kolathayar
2010 ◽  
Vol 1 (1) ◽  
pp. 88-109
Author(s):  
B. Munwar Basha ◽  
G. L. Sivakumar

Using additional dynamic parameters in the pseudo-static method like shear wave and primary wave velocities of soil, phase change in the shear and primary waves, and soil amplification for seismic accelerations, one can benefit from another useful tool called pseudo-dynamic method to solve the problem of earth pressures. In this study, the pseudo-dynamic method is used to compute the seismic passive earth pressures on a rigid gravity retaining wall by considering both the planar failure and composite failure (log-spiral and planar) mechanisms. To validate the present formulation, passive earth pressure computed by the present method are compared with those given by other authors. Seismic passive earth pressure coefficients are provided in tabular form for different parameters. The sliding and rotational displacements are also computed and results of the comparative study showed that the assumption of planar failure mechanism for rough soil-wall interfaces significantly overestimates passive earth pressure and underestimate the sliding and rotational displacements.


2015 ◽  
Vol 52 (9) ◽  
pp. 1241-1254 ◽  
Author(s):  
Mrunal A. Patki ◽  
J.N. Mandal ◽  
D.M. Dewaikar

A numerical method is developed to evaluate the passive earth pressure coefficients for an inclined rigid retaining wall resting against a horizontal cohesionless backfill. A composite failure surface comprises a log spiral, and its tangent is assumed in the present study. The unique failure surface is identified based on the limit equilibrium approach coupled with the Kötter equation (published in 1903). Force equilibrium conditions are used to evaluate the magnitude of the passive thrust, whereas the moment equilibrium condition is employed to determine the location of the passive thrust. The distinctive feature of the present study is that no assumption is required to be made regarding the point of application of the passive thrust, which would otherwise be an essential criterion with respect to the several limit equilibrium based investigations available in the literature. The passive earth pressure coefficients, Kpγ, are evaluated for various values of soil frictional angle [Formula: see text], wall frictional angle δ, and wall inclination angle λ, and compared with the existing results.


Author(s):  
Xiaofeng Han ◽  
Zhenyin Cai ◽  
Wenang Hou ◽  
Xiaobo Ruan

2000 ◽  
Vol 37 (2) ◽  
pp. 463-478 ◽  
Author(s):  
A -H Soubra

The passive earth pressure problem is investigated by means of the kinematical method of the limit analysis theory. A translational kinematically admissible failure mechanism composed of a sequence of rigid triangles is proposed. This mechanism allows the calculation of the passive earth pressure coefficients in both the static and seismic cases. Quasi-static representation of earthquake effects using the seismic coefficient concept is adopted. Rigorous upper-bound solutions are obtained in the framework of the limit analysis theory. The numerical results of the static and seismic passive earth pressure coefficients are presented and compared with the results of other authors.Key words: limit analysis, passive pressure, earthquake.


Author(s):  
B. Munwar Basha ◽  
G. L. Sivakumar

Using additional dynamic parameters in the pseudo-static method like shear wave and primary wave velocities of soil, phase change in the shear and primary waves, and soil amplification for seismic accelerations, one can benefit from another useful tool called pseudo-dynamic method to solve the problem of earth pressures. In this study, the pseudo-dynamic method is used to compute the seismic passive earth pressures on a rigid gravity retaining wall by considering both the planar failure and composite failure (log-spiral and planar) mechanisms. To validate the present formulation, passive earth pressure computed by the present method are compared with those given by other authors. Seismic passive earth pressure coefficients are provided in tabular form for different parameters. The sliding and rotational displacements are also computed and results of the comparative study showed that the assumption of planar failure mechanism for rough soil-wall interfaces significantly overestimates passive earth pressure and underestimate the sliding and rotational displacements.


2011 ◽  
Vol 243-249 ◽  
pp. 3001-3006
Author(s):  
Yan Zhi Wu

Applying combined surface,the graphical method is used to calculate the passive earth pressure usually. Not only procedure of the graphical method is complicated but also its precision is poor. Based on the principle of the circular combined surface and methods of mathematics and mechanics method ,a formula of passive earth pressure on cohesive soil,which can be applied to the trial calculation by programming procedures,is proposed. The case analysis shows that the calculated results are the same as those calculated by the Coulomb theory under the conditions of the smooth vertical wall back; In the small,there is slight difference between the two; But with the increase of,the calculated results of Coulomb theory are significantly greater than those calculated by the method. Therefore, in a greater external friction anglebetween the wall and the backfill, it should use the method which optimizes the engineering design and reduces project cost.


Sign in / Sign up

Export Citation Format

Share Document