cohesionless soil
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 100)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 71 (2) ◽  
pp. 2175-2190
Author(s):  
Ayman Abd-Elhamed ◽  
Mohamed Fathy ◽  
Khaled M. Abdelgaber

2021 ◽  
Author(s):  
Junnan Song ◽  
Martin Achmus

Abstract. The bearing behaviour of large-diameter monopile foundations for offshore wind turbines under lateral cyclic loads in cohesionless soil is an issue of ongoing research. In practice, mostly the p-y approach is applied in the design of monopiles. Recently, modifications of the original p-y approach for monotonic loading stated in the API regulations (API 2014) have been proposed to account for the special bearing behaviour of large-diameter piles with small length-to-diameter ratios (e.g. Thieken et al. 2015, Byrne et al. 2015). However, cyclic loading for horizontally loaded piles predominates the serviceability of the offshore wind converters, and the actual number of load cycles cannot be considered by the cyclic p-y approach of the API regulations. This research is therefore focusing on the effects of cyclic loading on the p-y curves along the pile shaft and aiming to develop a cyclic overlay model to determine the cyclic p-y curves valid for a lateral load with a given number of load cycles. The “Stiffness Degradation Method (SDM)” (Achmus et al. 2009) is applied in a three-dimensional finite element model to determine the effect of the cyclic loading by degrading the secant soil stiffness according to the magnitude of cyclic loading and number of load cycles based on the results of cyclic triaxial tests. Thereby, the numerical simulation results are used to develop a “cyclic overlay model”, i.e. an analytical approach to adapt the monotonic (or static) p-y curve to the number of load cycles. The new model is applied to a reference system and compared to the API approach for cyclic loads.


2021 ◽  
Vol 11 (24) ◽  
pp. 11883
Author(s):  
Zhitong Zhang ◽  
Weiming Gong ◽  
Guoliang Dai ◽  
Xiaolin Cao ◽  
Yu Zhu ◽  
...  

This paper presents a field study on the axial behavior of four large-diameter drilled shafts embedded in coarse sand. The grouting and loading test procedures were reported. The bearing capacity of shafts (TS1 and TS2) and grouted drilled shafts (TS3 and TS4) were herein determined by the bi-directional static test and top-down load test, respectively. The enhancement mechanism of bearing characteristics of the grouted shafts was discussed in detail. The test results indicate that the bearing characteristics and load transfer mechanisms of the test shafts were significantly affected by the quantity of pressurized cement slurry and the mechanical properties of the soil surrounding the shafts. Furthermore, the tip resistance of shaft can be mobilized more rapidly and fully after grouting, the side and tip resistance are mobilized in a more synchronized and coordinated manner due to the pre-mobilization of the grouted cement. Additionally, the standard penetration test (SPT) prediction model was introduced to calculate and predict the SPT blow counts of soil after grouting. The results show that the post grouting has a more obvious improvement on the strength of cohesionless soil.


2021 ◽  
Vol 930 (1) ◽  
pp. 012084
Author(s):  
A Widyatmoko ◽  
D Legono ◽  
H C Hardiyatmo

Abstract Liquefaction during an earthquake is likely to occur in the quaternary geological layer of sediment. Based on the geological process, the mainland of Central Sulawesi was initially a sea lifted upward to become land Palu-Koro fault. Therefore, the land is basically of basic alluvium soil formation, sand deposits, and loose rock. The earthquake in Central Sulawesi in September 2018 was the cause of liquefaction, one of which was in the Jono Oge area, where most of the flow entered the Paneki river. This paper analyzed the potential for recurrent liquefaction by considering the soil structure and water level conditions. The authors focused on the downstream areas of the Paneki River, which passes through Langaleso and Kabobona Village. The data used is N-SPT data, followed by examining post-liquefaction settlement and lateral displacement. This study uses several variations of the earthquake magnitude and potential earthquakes that may occur. The results of observations indicate that the soil conditions of the study area are cohesionless soil. The liquefaction analysis shows that most of the research areas have liquefaction, land subsidence, and lateral displacement potential.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 472
Author(s):  
Hany El Naggar ◽  
Islam Ezzeldin

Piles provide a convenient solution for heavy structures, where the foundation soil bearing capacity, or the tolerable settlement may be exceeded due to the applied loads. In cohesionless soils, the two frequently used pile installation methods are driving and drilling (or boring). This paper reviews the results of a large database of pile load tests of driven and drilled piles in cohesionless soils at various locations worldwide. The load test results are compared with the static analysis design method for single piles recommended in the Canadian Foundation Engineering Manual (CFEM) and other codes and standards such as the American Association of State Highway and Transportation Officials, Federal Highway Administration, American Petroleum Institute, Eurocode, and the Naval Facilities Engineering Command. An improved pile design procedure is proposed linking the pile design coefficients and to the friction angle of the soil, rather than employing the generalized soil type grouping scheme previously used in the CFEM. This improvement included in the new version of the CFEM 2021 produces a more unified value of the pile capacity calculated by different designers, reducing the obtained design capacity discrepancies.


2021 ◽  
Vol 11 (21) ◽  
pp. 10317
Author(s):  
Mahmood Ahmad ◽  
Feezan Ahmad ◽  
Piotr Wróblewski ◽  
Ramez A. Al-Mansob ◽  
Piotr Olczak ◽  
...  

This study examines the potential of the soft computing technique—namely, Gaussian process regression (GPR), to predict the ultimate bearing capacity (UBC) of cohesionless soils beneath shallow foundations. The inputs of the model are width of footing (B), depth of footing (D), footing geometry (L/B), unit weight of sand (γ), and internal friction angle (ϕ). The results of the present model were compared with those obtained by two theoretical approaches reported in the literature. The statistical evaluation of results shows that the presently applied paradigm is better than the theoretical approaches and is competing well for the prediction of UBC (qu). This study shows that the developed GPR is a robust model for the qu prediction of shallow foundations on cohesionless soil. Sensitivity analysis was also carried out to determine the effect of each input parameter.


Sign in / Sign up

Export Citation Format

Share Document