planar failure
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ha Young Choi ◽  
Seo Jin Kim ◽  
Christopher H. Kang ◽  
Chun Cheng Tsao

Abstract In semiconductor industry, planer analysis is important in many applications such as Passive Voltage Contrast (PVC) and sample preparation for nanoprobing. In order to achieve successful results on the planer surface analysis, a proper delayering technique is critical. As the thickness of metal line, via of Back-End-of Line (BEOL) and contact layer are getting thinner in advanced nodes, we observed convention hand polishing is facing major challenge in endpointing at exactly targeted layer and specific Region of Interest (ROI). In addition, Cobalt process starting from 5nm node brings additional challenges. Cobalt tends to be oxidized easily which becomes not friendly for nanoprobing. The alternative solution to produce good planar surface is to use Plasma Focus Ion Beam (PFIB) technique with patented DX gas assisted. PFIB changes the convention FA workflow and has been proven that the new workflow improves the efficiency of planar failure analysis such as PVC and nanoprobing sample preparation.


2021 ◽  
Vol 17 (33) ◽  
pp. 71-96
Author(s):  
Roberto J Marín ◽  
Ricardo Jaramillo-González

Many physically-based distributed models study the landslide occurrence using an infinite slope stability analysis, simulating a planar failure, which is not usually applicable to rotational failures and deep landslides. Recently, some three-dimensional distributed physically-based models have been developed that have been applied in different parts of the world. In this research, the Scoops3D model is implemented for a landslide susceptibility analysis in a tropical mountainous terrain of the Colombian Andes (Medellín, Colombia). In addition to identifying the areas susceptible to the occurrence of rotational landslides, the results of the safety factor are analyzed with the areas of associated critical failure surfaces to provide an interpretation and explanation of the simulation results. This is to have a better understanding of how the model works and to facilitate its implementation in landslide hazard assessment. The Scoops3D physicallybased model can be a very useful tool for mass movement risk management projects.


2021 ◽  
Vol 9 ◽  
Author(s):  
Marelyn Telun Daniel ◽  
Tham Fatt Ng ◽  
Mohd. Farid Abdul Kadir ◽  
Joy Jacqueline Pereira

Landslide susceptibility assessment was conducted in Canada Hill, Sarawak, Malaysia through a combined bivariate statistics and expert consultation approach using geographical information system, which captures landslide-conditioning parameters specific to the study area; to ensure its usefulness in practice. Over the past four decades, many landslide parameters and increasingly sophisticated statistical methods have been used in landslide research. However, the findings have had very limited use in practice as the actual ground conditions are not well represented. The weakness is due to poor quality of data in landslide inventories and inadequate understanding of landslide-conditioning parameters. In this study, bivariate statistical method was used in conjunction with an iterative process of expert consultation. Thirteen original landslide-conditioning parameters were narrowed down to six, with the addition of a unique parameter, planar failure potential, which was selected based on expert input. The parameter captures planar failure landslides, which has the highest impact in the study area, causing loss of lives and property destruction. The inaugural landslide susceptibility map for the study area has five classes; very low, low, moderate, high and very high susceptibility. All major planar failures and most smaller circular failures fall within the very high susceptibility class, with a success rate of 75.8%. The approach used in this study has improved the quality of the landslide inventory and delineated key conditioning parameters. The resultant map captures local conditions, which is useful for landslide management.


2021 ◽  
Vol 11 (4) ◽  
pp. 1698
Author(s):  
Niccolò Menegoni ◽  
Daniele Giordan ◽  
Cesare Perotti

The Markland test is one of the most diffused and adopted methods of kinematic analysis for the identification of critical intersections of rock discontinuities that could generate rock failures. Traditionally, the kinematic analysis is based on the use of a stereographic approach that is able to identify the critical combination between the orientations of discontinuities and the rock wall. The recent improvements in the use of Digital Outcrop Models (DOMs) created the conditions for the development of a new automatized approach. We present ROck Slope Kinematic Analysis (ROKA) which is an open-source algorithm aimed at performing the Kinematic Analysis using the discontinuity measures collected onto a 3D DOM. The presented algorithm is able to make a local identification of the possible critical combination between the identified discontinuities and the orientation of the slope. Using this approach, the algorithm is able to identify on the slope the presence of critical combinations according to the traditional kinematic analysis of planar failure, flexural toppling, wedge failure, and direct toppling modes of failures and then visualize them on DOMs. In this way, the traditional approach is more effective and can be adopted for a more detailed analysis of large and complex areas.


2020 ◽  
Vol 14 (5) ◽  
pp. 1262-1273
Author(s):  
Norly Belandria ◽  
Roberto Úcar ◽  
Francisco M. León ◽  
Ferri Hassani

2019 ◽  
Vol 260 ◽  
pp. 105234 ◽  
Author(s):  
Chaoyi Sun ◽  
Congxin Chen ◽  
Yun Zheng ◽  
Wei Zhang ◽  
Feng Liu

2017 ◽  
Vol 2 (3) ◽  
pp. 255
Author(s):  
Yahdi Azzuhry

Rock mass in nature tend to be unideal, for it is heterogeneous, anisotropic and has discontinuity. The discontinuity makes anisotropic strength and stress in the rock mass, and also controls the changing of the elastic properties of rock mass. This condition results to disruptions in the rock mass strength balance, and finally drives the slopes to collapse. This study aims to determine the slope failure mechanisms in the area of case study, as well as its variations based on the Rock Mass Rating (RMR), Geological Strength Index (GSI), Slope Mass Rating (SMR), kinematic analysis, numerical analysis and monitoring approach slope movement in a coal mine slope applications. The site investigations were implemented to obtain information about slope collapse. Prior to the collapse, the slope inclination was 38° with of 94 meters height, strike slope of N 245 E and direction of slope surface of 335°. After the collapse, the slope was became 25º; and after the collapse materials were cleared, it was 35º. The discontinuity mapping obtained 5 sets of discontinuities, and the data were developed to obtain the value of RMR. The result of piezometer measurements was that at occurrence of collapse, slope elevation was 44.40m. Displacement value from monitoring SSMR showed that when the slope was collapsing in two stages, the first stage value was 70.61cm (a more critical condition, the value was rounded down to 70cm to the implementation in modelling) and the second stage value was at 124.25cm. The value of RMR89 in this study was greater than the value of GSI and SMR. As for the average value, it was obtained 34.67 for RMR89 value and 29.67 for GSI value, these rocks then can be classified into Poor Rock class number IV. The result of kinematic analysis found that sliding planar failure at dips 36°, and wedge failure at dips 36°, 35° and 34°. Acquisition SMR value obtained at 25, 27, 28 and 29. The SMR values classified the rock mass quality into class number IV, the description of the rock mass was relatively poor, the slope stability was low or unstable and the collapse manifold was planar or wedge failure. The result from the analysis of the model with its criteria obtained was that un-collapse conditions at angle 29°. It is recommended to use 29° angle to repair the slopes, and also recommended for overall high wall slope angle. Type of collapse that occurred on the slope failure mechanisms in all of the analysis that has been done, it is known that the mechanisms involved are complex types (combine of wedge failure, planar failure, and step-path failure) or classified into large scale rock slope failure surface.


Sign in / Sign up

Export Citation Format

Share Document