scholarly journals K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles splitting as direct sums

2015 ◽  
Vol 181 (1) ◽  
pp. 137-175 ◽  
Author(s):  
Benjamin J. Wyser
2018 ◽  
Vol 2020 (24) ◽  
pp. 9887-9932 ◽  
Author(s):  
Vladimiro Benedetti ◽  
Sara Angela Filippini ◽  
Laurent Manivel ◽  
Fabio Tanturri

Abstract In [3] we introduced orbital degeneracy loci as generalizations of degeneracy loci of morphisms between vector bundles. Orbital degeneracy loci can be constructed from any stable subvariety of a representation of an algebraic group. In this paper we show that their canonical bundles can be conveniently controlled in the case where the affine coordinate ring of the subvariety is Gorenstein. We then study in a systematic way the subvarieties obtained as orbit closures in representations with finitely many orbits, and we determine the canonical bundles of the corresponding orbital degeneracy loci in the Gorenstein cases. Applications are given to the construction of low-dimensional varieties with negative or trivial canonical bundle.


1998 ◽  
Vol 09 (03) ◽  
pp. 277-293
Author(s):  
ADAM HARRIS

Let [Formula: see text] be a proper flat morphism between manifolds, and [Formula: see text] an analytic subset, such that the fibres Xt, for all [Formula: see text], determine a locally trivial deformation of a compact complex manifold. Non-generic fibres Xt, for t ∈ A, may be taken a priori to be singular spaces, or to have a smooth complex structure which is biholomorphically distinct from their generic neighbours. The main theorem of this article provides a sufficient condition for local triviality of the entire family [Formula: see text], in terms of the dimension of A and of the singular subvarieties of certain "degeneracy loci" in [Formula: see text]. Several specific applications of the main theorem are subsequently examined, some of which correspond sharply with examples of "structure-jumping" in complex deformations and "jumping loci" of vector bundles on complex projective space.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Steven V Sam

International audience The classical Thom―Porteous formula expresses the homology class of the degeneracy locus of a generic map between two vector bundles as an alternating sum of Schur polynomials. A proof of this formula was given by Pragacz by expressing this alternating sum as the Euler characteristic of a Schur complex, which gives an explanation for the signs. Fulton later generalized this formula to the situation of flags of vector bundles by using alternating sums of Schubert polynomials. Building on the Schubert functors of Kraśkiewicz and Pragacz, we introduce Schubert complexes and show that Fulton's alternating sum can be realized as the Euler characteristic of this complex, thereby providing a conceptual proof for why an alternating sum appears. \par La formule classique de Thom―Porteous exprime la classe d'homologie du locus de la dégénérescence d'une fonction générique entre deux fibrés vectoriels comme une somme alternée des polynômes de Schur. Un preuve de cette formule a été donnée par Pragacz en exprimant ce alternant somme comme la caractéristique d'Euler d'un complexe de Schur, ce qui donne une explication pour les signes. Fulton puis généralisée cette formule à la situation des drapeaux de fibrés vectoriels à l'aide alternant des sommes de polynômes de Schubert. S'appuyant sur le Schubert foncteurs de Kraśkiewicz et Pragacz, nous introduisons les complexes de Schubert et montrent que la somme alternée de Fulton peuvent être réalisées en tant que Euler caractéristique de ce complexe, fournissant ainsi une preuve conceptuelle pour lesquelles une somme alternée appara\^ıt.


2020 ◽  
Vol 156 (8) ◽  
pp. 1623-1663
Author(s):  
Amin Gholampour ◽  
Richard P. Thomas

We express nested Hilbert schemes of points and curves on a smooth projective surface as ‘virtual resolutions’ of degeneracy loci of maps of vector bundles on smooth ambient spaces. We show how to modify the resulting obstruction theories to produce the virtual cycles of Vafa–Witten theory and other sheaf-counting problems. The result is an effective way of calculating invariants (VW, SW, local PT and local DT) via Thom–Porteous-like Chern class formulae.


2011 ◽  
Vol 57 (2) ◽  
pp. 409-416
Author(s):  
Mihai Anastasiei

Banach Lie AlgebroidsFirst, we extend the notion of second order differential equations (SODE) on a smooth manifold to anchored Banach vector bundles. Then we define the Banach Lie algebroids as Lie algebroids structures modeled on anchored Banach vector bundles and prove that they form a category.


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Beata Rothkegel

AbstractIn the paper we formulate a criterion for the nonsingularity of a bilinear form on a direct sum of finitely many invertible ideals of a domain. We classify these forms up to isometry and, in the case of a Dedekind domain, up to similarity.


Author(s):  
Lorenzo De Biase ◽  
Enrico Fatighenti ◽  
Fabio Tanturri

AbstractWe rework the Mori–Mukai classification of Fano 3-folds, by describing each of the 105 families via biregular models as zero loci of general global sections of homogeneous vector bundles over products of Grassmannians.


Sign in / Sign up

Export Citation Format

Share Document