scholarly journals Commuting conjugates of finite-order mapping classes

2020 ◽  
Vol 209 (1) ◽  
pp. 69-93
Author(s):  
Neeraj K. Dhanwani ◽  
Kashyap Rajeevsarathy
Keyword(s):  
2019 ◽  
Vol 11 (04) ◽  
pp. 929-964
Author(s):  
Shiv Parsad ◽  
Kashyap Rajeevsarathy ◽  
Bidyut Sanki

Let [Formula: see text] denote the mapping class group of the closed orientable surface [Formula: see text] of genus [Formula: see text], and let [Formula: see text] be of finite order. We give an inductive procedure to construct an explicit hyperbolic structure on [Formula: see text] that realizes [Formula: see text] as an isometry. In other words, this procedure yields an explicit solution to the Nielsen realization problem for cyclic subgroups of [Formula: see text]. Furthermore, we give a purely combinatorial perspective by showing how certain finite order mapping classes can be viewed as fat graph automorphisms. As an application of our realizations, we determine the sizes of maximal reduction systems for certain finite order mapping classes. Moreover, we describe a method to compute the image of finite order mapping classes and the roots of Dehn twists, under the symplectic representation [Formula: see text].


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter deals with finite subgroups of the mapping class group. It first explains the distinction between finite-order mapping classes and finite-order homeomorphisms, focusing on the Nielsen realization theorem for cyclic groups and detection of torsion with the symplectic representation. It then considers the problem of finding an Euler characteristic for orbifolds, to prove a Gauss–Bonnet theorem for orbifolds, and to use these results to show that there is a universal lower bound of π‎/21 for the area of any 2-dimensional orientable hyperbolic orbifold. The chapter demonstrates that, when g is greater than or equal to 2, finite subgroups have order at most 84(g − 1) and cyclic subgroups have order at most 4g + 2. It also describes finitely many conjugacy classes of finite subgroups in Mod(S) and concludes by proving that Mod(Sɡ) is generated by finitely many elements of order 2.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the construction as well as the algebraic and dynamical properties of pseudo-Anosov homeomorphisms. It first presents five different constructions of pseudo-Anosov mapping classes: branched covers, constructions via Dehn twists, homological criterion, Kra's construction, and a construction for braid groups. It then proves a few fundamental facts concerning stretch factors of pseudo-Anosov homeomorphisms, focusing on the theorem that pseudo-Anosov stretch factors are algebraic integers. It also considers the spectrum of pseudo-Anosov stretch factors, along with the special properties of those measured foliations that are the stable (or unstable) foliations of some pseudo-Anosov homeomorphism. Finally, it describes the orbits of a pseudo-Anosov homeomorphism as well as lengths of curves and intersection numbers under iteration.


2007 ◽  
Vol 7 (3) ◽  
pp. 239-254 ◽  
Author(s):  
I.H. Sloan

Abstract Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finiteorder function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N¯½), where N is the number of points, yet for which there exists a smooth 3- dimensional integrand for which the integration rule does not converge.


2014 ◽  
Vol 58 (1) ◽  
pp. 13-22
Author(s):  
Roman Wituła ◽  
Edyta Hetmaniok ◽  
Damian Słota

Abstract In the paper we present the selected properties of composition relation of the convergent and divergent permutations connected with commutation. We note that a permutation on ℕ is called the convergent permutation if for each convergent series ∑an of real terms, the p-rearranged series ∑ap(n) is also convergent. All the other permutations on ℕ are called the divergent permutations. We have proven, among others, that, for many permutations p on ℕ, the family of divergent permutations q on ℕ commuting with p possesses cardinality of the continuum. For example, the permutations p on ℕ having finite order possess this property. On the other hand, an example of a convergent permutation which commutes only with some convergent permutations is also presented.


Author(s):  
Cristina Bertone ◽  
Francesca Cioffi

AbstractGiven a finite order ideal $${\mathcal {O}}$$ O in the polynomial ring $$K[x_1,\ldots , x_n]$$ K [ x 1 , … , x n ] over a field K, let $$\partial {\mathcal {O}}$$ ∂ O be the border of $${\mathcal {O}}$$ O and $${\mathcal {P}}_{\mathcal {O}}$$ P O the Pommaret basis of the ideal generated by the terms outside $${\mathcal {O}}$$ O . In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $$\partial {\mathcal {O}}$$ ∂ O -marked sets (resp. bases) and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked sets (resp. bases). We prove that a $$\partial {\mathcal {O}}$$ ∂ O -marked set B is a marked basis if and only if the $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked set P contained in B is a marked basis and generates the same ideal as B. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $$\partial {\mathcal {O}}$$ ∂ O -marked bases and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Gröbner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in affine spaces of lower dimension. Furthermore, we observe that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 0-dimensional schemes without any group actions. Several examples are given throughout the paper.


Sign in / Sign up

Export Citation Format

Share Document