A two-pheromone trail ant colony system—tabu search approach for the heterogeneous vehicle routing problem with time windows and multiple products

2011 ◽  
Vol 19 (2) ◽  
pp. 233-252 ◽  
Author(s):  
Jair J. De la Cruz ◽  
Carlos D. Paternina-Arboleda ◽  
Victor Cantillo ◽  
Jairo R. Montoya-Torres
2014 ◽  
Vol 1061-1062 ◽  
pp. 1108-1117
Author(s):  
Ya Lian Tang ◽  
Yan Guang Cai ◽  
Qi Jiang Yang

Aiming at vehicle routing problem (VRP) with many extended features is widely used in actual life, multi-depot heterogeneous vehicle routing problem with soft time windows (MDHIVRPSTW) mathematical model is established. An improved ant colony optimization (IACO) is proposed for solving this model. Firstly, MDHIVRPSTW was transferred into different groups according to nearest depot method, then constructing the initial route by scanning algorithm (SA). Secondly, genetic operators were introduced, and then adjusting crossover probability and mutation probability adaptively in order to improve the global search ability of the algorithm. Moreover, smooth mechanism was used to improve the performance of ant colony optimization (ACO). Finally, 3-opt strategy was used to improve the local search ability. The proposed IACO has been tested on a 32-customer instance which was generated randomly. The experimental results show that IACO is superior to other three algorithms in terms of convergence speed and solution quality, thus the proposed method is effective and feasible, and the proposed model is better than conventional model.


Sign in / Sign up

Export Citation Format

Share Document