Determination of the Time-to-Saturation of Current Transformers in Short-Circuit Transient Regimes

2017 ◽  
Vol 51 (2) ◽  
pp. 234-239 ◽  
Author(s):  
S. L. Kuzhekov ◽  
A. A. Degtyarev ◽  
V. S. Vorob’ev ◽  
V. V. Moskalenko
Author(s):  
Alexandr Neftissov ◽  
Andrii Biloshchytskyi ◽  
Olzhas Talipov ◽  
Oxana Andreyeva

A study of the functioning of reed switches under the influence of a magnetic field created by a current in a conductor in a transient mode with the presence of an aperiodic component has been carried out. A well-known method for determining current using reed switches was implemented. At the same time, it was determined that the originally formulated method did not give the required result within the limits of errors. This is most likely due to the peculiarities of the mechanism of movement of the reed switch contacts. Alternatively, the measurements were taken to take the return currents instead of the pick-up currents and the time between the return times. They are more stable. Simulation is performed, experimental determination of the value of surge current by measuring time is carried out. The main element of the created installation was the power transformer coil with low active and high inductive resistance. As part of the study, the reed switches were placed in a magnetic field with an aperiodic component, as in the transient mode. This study will show the applicability of reed switches for the construction of relay protection devices that will not need current transformers to obtain information about the primary current in the conductor. In the course of the research, it was found that the error in determining the magnitude of current was no more than 10 %. Using microprocessors, it is possible to build relay protection devices with a speed of up to 20 ms. This result makes it possible to build new devices. Since in the well-known developments, it was only said about determining the magnitude of current in a steady state. When building relay protection devices on reed switches, without using current transformers, it will be possible to build backup protections that duplicate not only the devices themselves, but also the primary measuring transformers with other sensitive elements. This will improve the reliability of the power supply.


2021 ◽  
Vol 16 (4) ◽  
pp. 48-61
Author(s):  
Kirill K. Krutikov ◽  
◽  
Vyacheslav V. Rozhkov ◽  
Vladimir V. Fedotov ◽  
◽  
...  

The article deals with the mathematical basis and simulation of the saturation processes of current transformers with aperiodic components of short-circuit currents. Saturation processes of current transformers can affect the correct operation of the protections. At power plants, in particular atomic ones, the number of current transformers is several hundred with different loads, lengths of supply cables and the implementation of relay protection. At the same time, the determination of the time to saturation is essential for the construction of circuits and principles of construction of relay protection systems and automation of power plants. The dynamic processes in the primary and secondary circuits of current transformers in dynamics are considered in detail. A mathematical description of the dynamic processes of a current transformer in the nominal mode and during a short circuit in its primary circuit is given. The substantiation of the expediency of using the hypothesis of a rectangular magnetization characteristic in simplified calculations of saturation processes is given. The possibility of using the characteristics of magnetization in the test protocols available in practice in the no-load mode to simulate saturation processes has been demonstrated. Simulation of current transformers for the no-load experiment and power supply of the current transformer from the secondary side, as well as during its operation under conditions of a short circuit on the primary side and a known load on the secondary side is carried out. Thus, with the help of a computer experiment, it is possible to take the current- voltage characteristics and transfer them to the model with the saturation of current transformers already in the short-circuit mode. The efficiency of dynamic simulation of current transformers is shown. The software implementation of the model is performed by means of structural simulation in the MatLab package, based on the solution of equations of matrix structures and emulation of parallel computations. It was found that with the adequacy of the model and the real current transformer with the involvement of information from the no-load mode, the determination of the magnetization time from the aperiodic current components from the model is much easier than the analysis by other existing methods. They require detailed design details of the current transformer and the magnetic properties of the steel.


2017 ◽  
Vol 26 (102) ◽  
pp. 110-119
Author(s):  
D. S. Yarymbash, ◽  
◽  
S. T. Yarymbash, ◽  
T. E. Divchuk, ◽  
D. A. Litvinov

Sign in / Sign up

Export Citation Format

Share Document