current transformers
Recently Published Documents


TOTAL DOCUMENTS

687
(FIVE YEARS 119)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Alexandr Neftissov ◽  
Andrii Biloshchytskyi ◽  
Olzhas Talipov ◽  
Oxana Andreyeva

A study of the functioning of reed switches under the influence of a magnetic field created by a current in a conductor in a transient mode with the presence of an aperiodic component has been carried out. A well-known method for determining current using reed switches was implemented. At the same time, it was determined that the originally formulated method did not give the required result within the limits of errors. This is most likely due to the peculiarities of the mechanism of movement of the reed switch contacts. Alternatively, the measurements were taken to take the return currents instead of the pick-up currents and the time between the return times. They are more stable. Simulation is performed, experimental determination of the value of surge current by measuring time is carried out. The main element of the created installation was the power transformer coil with low active and high inductive resistance. As part of the study, the reed switches were placed in a magnetic field with an aperiodic component, as in the transient mode. This study will show the applicability of reed switches for the construction of relay protection devices that will not need current transformers to obtain information about the primary current in the conductor. In the course of the research, it was found that the error in determining the magnitude of current was no more than 10 %. Using microprocessors, it is possible to build relay protection devices with a speed of up to 20 ms. This result makes it possible to build new devices. Since in the well-known developments, it was only said about determining the magnitude of current in a steady state. When building relay protection devices on reed switches, without using current transformers, it will be possible to build backup protections that duplicate not only the devices themselves, but also the primary measuring transformers with other sensitive elements. This will improve the reliability of the power supply.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8602
Author(s):  
Ernest Stano

This paper presents the method for evaluation of the turns ratio correction of the inductive current transformer using the magnetization curves determined at the non-load state and in the load conditions. The presented method may be applied to determine even a fractional winding correction factor. The standard IEC 61869-2 provides the method to determine the turns ratio correction of the tested CT from the measured rms values of voltages on its primary and secondary winding in the non-load state. However, this approach is limited in determining the significant changes in the number of turns of the secondary winding. Moreover, the paper presents the influence of the applied turns ratio correction on the frequency characteristics of the current error and phase displacement of the inductive current transformers evaluated for the transformation of the distorted current.


2021 ◽  
Vol 2021 (3-4) ◽  
pp. 77-84
Author(s):  
Sergey Morozov ◽  
Andrey Morozov

Work objective is finding rational technical and economic solutions for examining current transformers for techspecs compliance satisfying the requirements of reinstalled microprocessor type protective relays and automation devices manufactured by NP EKRA LLC, taking into account DC component. Research methods: analytical methods for calculating the time of remnant magnetization in the core of a current transformer. Research results and novelty: it is understood that the saturation time of current transformers of the basic and backup protections, according to the results of the analytical method, was more than 25 ms, and for current transformers of differential bus bar protection was more than 5 ms. The obtained saturation time values for all types of current transformers built into oil circuit-breaker bushings (HV line) of 110 kV and bus bar coupling connector (BCC) of 110 kV (main protection, backup protection, differential bus protection), both in the absence and in the presence of remanent induction magnetic in CT cores with three-phase and single-phase short circuits, satisfy completely technical requirements either of microprocessor type protective relays or CT differential bus bar protection. Conclusion: built into CT BCC circuit-breaker bushings of 110 kV and oil circuit-breaker bushings (HV line) of 110 kV Foundry substations do not necessitate a mandatory replacement in case of non-complex redesign of microprocessor type protective relays and automation devices. When replacing oil circuit breakers with gas-insulated ones, it is recommended to use CT with similar characteristics.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012024
Author(s):  
Xiaopin Deng ◽  
Hua Huang ◽  
Yong Liu ◽  
Xiaozhou Wang ◽  
Bin Liu

Abstract In ultra high voltage(UHV) DC system, the transient characteristics for fault current monitoring of current transformers for DC application (DCCTs) and the consistency of response characteristics when different types of DCCTs are used for differential protection have become important factors affecting the safe and stable operation of DC system. In this paper, transient characteristics of all-fiber DCCTs and shunt DCCTs mainly used in DC system were studied, the main parameters of the transient characteristics including delay time and maximum peak instantaneous error were tested, and the key parameters influencing the response consistency of DCCTs were analyzed. The results show that the maximum peak instantaneous errors of all-fiber DCCTs and shunt DCCTs can meet ±5% limit requirement, meeting the demand for protection application in DC system. The delay time is the main factors affecting the maximum peak instantaneous error of DCCT. The longer the delay time is, the greater the maximum peak instantaneous error is, which may even exceed the limit value of ±5%. If necessary, the delay time of DCCTs participating in differential protection can be compensated. The research results provide a theoretical basis for preventing the malfunction of protection device caused by the inconsistent response characteristics of DCCTs in DC system.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012172
Author(s):  
B Mashrapov

Abstract Centralized protections have several advantages over autonomous protections; however, incorrect actions of the former can result in more serious consequences. The reliability of their operation can be ensured with the help of majorization principle, but the number of devices with different principles of operation is insufficient so far. Three centralized protections are suggested; one of them allows duplication of current transformers. They all are based on the fact that the electric motors of feeders feed a short-circuit point; as a result, the current in a feeder damaged becomes higher than the current at the power input, and the currents in undamaged feeders change the direction to opposite. The conditions for protection actuation are presented. Operation of the protections in different modes is described in detail.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7273
Author(s):  
Ismoil Odinaev ◽  
Aminjon Gulakhmadov ◽  
Pavel Murzin ◽  
Alexander Tavlintsev ◽  
Sergey Semenenko ◽  
...  

Current measurements from electromagnetic current transformers are essential for the construction of secondary circuit systems, including for protection systems. Magnetic core of these transformers are at risk of saturation, as a result of which maloperation of protection algorithms can possibly occur. The paper considers methods for recovering a current signal in the saturation mode of current transformers. The advantages and disadvantages of methods for detecting the occurrence of current transformers core saturation are described. A comparative analysis of mathematical methods for recovering a current signal is given, their approbation was carried out, and the most promising of them was revealed. The stability and sensitivity of recovery methods were tested by adding white noise to the measured signal and taking into account the initial flux density (remanent magnetization) in the current transformers core. Their comparison is given on the basis of angular, magnitude, and total errors at a given simulation interval.


2021 ◽  
Author(s):  
A.A. Voloshin ◽  
E.A. Voloshin ◽  
A.I. Kovalenko ◽  
S.A. Shapkin ◽  
V.S. Sazanov

2021 ◽  
Vol 11 (19) ◽  
pp. 8808
Author(s):  
Gregory Sheets ◽  
Philip Bingham ◽  
Mark B. Adams ◽  
David Bolme ◽  
Scott L. Stewart

Characterization of Unintended Conducted Emissions (UCE) from electronic devices is important when diagnosing electromagnetic interference, performing nonintrusive load monitoring (NILM) of power systems, and monitoring electronic device health, among other applications. Prior work has demonstrated that UCE analysis can serve as a diagnostic tool for energy efficiency investigations and detailed load analysis. While explaining the feature selection of deep networks with certainty is often not fully comprehensive, or in other applications, quite lacking, additional tools/methods for further corroboration and confirmation can help further the understanding of the researcher. This is true especially in the subject application of the study in this paper. Often the focus of such efforts is the selected features themselves, and there is not as much understanding gained about the noise in the collected data. If selected feature and noise characteristics are known, it can be used to further shape the design of the deep network or associated preprocessing. This is additionally difficult when the available data are limited, as in the case which the authors investigated in this study. Here, the authors present a novel work (which is a proposed complementary portion of the overall solution to the deep network classification explainability problem for this application) by applying a systematic progression of preprocessing and a deep neural network (ResNet architecture) to classify UCE data obtained via current transformers. By using a methodical application of preprocessing techniques prior to a deep classifier, hypotheses can be produced concerning what features the deep network deems important relative to what it perceives as noise. For instance, it is hypothesized in this particular study as a result of execution of the proposed method and periodic inspection of the classifier output that the UCE spectral features are relatively close to each other or to the interferers, as systematically reducing the beta parameter of the Kaiser window produced progressively better classification performance, but only to a point, as going below the Beta of eight produced decreased classifier performance, as well as the hypothesis that further spectral feature resolution was not as important to the classifier as rejection of the leakage from a spectrally distant interference. This can be very important in unpredictable low-FNR applications, where knowing the difference between features and noise is difficult. As a side-benefit, much was learned regarding the best preprocessing to use with the selected deep network for the UCE collected from these low power consumer devices obtained via current transformers. Baseline rectangular windowed FFT preprocessing provided a 62% classification increase versus using raw samples. After performing a more optimal preprocessing, more than 90% classification accuracy was achieved across 18 low-power consumer devices for scenarios in which the in-band features-to-noise ratio (FNR) was very poor.


2021 ◽  
Vol 25 (4) ◽  
pp. 450-462
Author(s):  
T. S. Mukhametgaleeva ◽  
D. S. Fedosov

We develop a simplified model of a current transformer based on its current-voltage characteristic. This model is applicable for studying relay protection operation in transient conditions when no high accuracy or consideration of current transformer magnet core hysteresis is required. The model was developed in MATLAB Simulink using elements of the SimPowerSystems and Simscape libraries. The model uses the transformation ratio and current-voltage characteristic obtained during operational tests of a current transformer. Calculation experiments with non-linear resistance found that a currentvoltage characteristic of voltage and current values can be used to model a current transformer, rather than instantaneous values. The following conditions were simulated: for nominal currents in current transformer windings to check the transformation ratio; for opened secondary winding; with current transformer saturation by increasing secondary loading; increasing the primary current ratio and presence of aperiodic current at the start of the transition process. It was found that the developed current transformer model allows for a correct imitation of all the above conditions. To verify the model, secondary current oscillograms were obtained using real current transformers 10 kV at known primary current, which were compared with nominal oscillograms in the model. The discrepancy between the results of calculational and real experiments was no more than 10% in amplitude values, with high-quality matching obtained for current charts in the model and real current transformers. A significant advantage of the developed model is that its setting requires no information on magnet core cross-section, power line length, steel grade, and the number of current transformer winding turns.


Sign in / Sign up

Export Citation Format

Share Document