Bilateral Comparison of Mercury and Gallium Fixed-Point Cells Using Standard Platinum Resistance Thermometer

2011 ◽  
Vol 32 (7-8) ◽  
pp. 1544-1552
Author(s):  
J. Bojkovski ◽  
T. Veliki ◽  
D. Zvizdić ◽  
J. Drnovšek
2017 ◽  
Vol 17 (3) ◽  
pp. 108-116 ◽  
Author(s):  
Rudolf Palenčár ◽  
Peter Sopkuliak ◽  
Jakub Palenčár ◽  
Stanislav Ďuriš ◽  
Emil Suroviak ◽  
...  

AbstractEvaluation of uncertainties of the temperature measurement by standard platinum resistance thermometer calibrated at the defining fixed points according to ITS-90 is a problem that can be solved in different ways. The paper presents a procedure based on the propagation of distributions using the Monte Carlo method. The procedure employs generation of pseudo-random numbers for the input variables of resistances at the defining fixed points, supposing the multivariate Gaussian distribution for input quantities. This allows taking into account the correlations among resistances at the defining fixed points. Assumption of Gaussian probability density function is acceptable, with respect to the several sources of uncertainties of resistances. In the case of uncorrelated resistances at the defining fixed points, the method is applicable to any probability density function. Validation of the law of propagation of uncertainty using the Monte Carlo method is presented on the example of specific data for 25 Ω standard platinum resistance thermometer in the temperature range from 0 to 660 °C. Using this example, we demonstrate suitability of the method by validation of its results.


Sign in / Sign up

Export Citation Format

Share Document