Solution of Evolution Equation for Longitudinal Structure Function F L upto Next-to-Next-to-Leading Order and Its t-Evolution at Small-x

2013 ◽  
Vol 52 (7) ◽  
pp. 2464-2476 ◽  
Author(s):  
N. Baruah ◽  
N. M. Nath ◽  
J. K. Sarma
2014 ◽  
Vol 29 (32) ◽  
pp. 1450189 ◽  
Author(s):  
G. R. Boroun ◽  
B. Rezaei ◽  
J. K. Sarma

In this paper, the evolutions of longitudinal proton structure function have been obtained at small x up to next-to-next-to-leading order using a hard Pomeron behavior. In our paper, evolutions of gluonic as well as heavy longitudinal structure functions have been obtained separately and the total contributions have been calculated. The total longitudinal structure functions have been compared with results of Donnachie–Landshoff (DL) model, Color Dipole (CD) model, kT factorization and H1 data.


2009 ◽  
Vol 18 (01) ◽  
pp. 131-140 ◽  
Author(s):  
G. R. BOROUN

We present an analytic formula to extract the longitudinal structure function in the next-to-leading order of the perturbation theory at low x, from the Regge-like behavior of the gluon distribution and the structure function at this limit. In this approach, the longitudinal structure function has the hard-Pomeron behavior. The determined values are compared with the H1 data and MRST model. All results can consistently be described within the framework of perturbative QCD, which essentially show increases as x decreases.


Sign in / Sign up

Export Citation Format

Share Document