scholarly journals A phenomenological solution small x to the longitudinal structure function dynamical behavior

2014 ◽  
Vol 29 (32) ◽  
pp. 1450189 ◽  
Author(s):  
G. R. Boroun ◽  
B. Rezaei ◽  
J. K. Sarma

In this paper, the evolutions of longitudinal proton structure function have been obtained at small x up to next-to-next-to-leading order using a hard Pomeron behavior. In our paper, evolutions of gluonic as well as heavy longitudinal structure functions have been obtained separately and the total contributions have been calculated. The total longitudinal structure functions have been compared with results of Donnachie–Landshoff (DL) model, Color Dipole (CD) model, kT factorization and H1 data.

2012 ◽  
Vol 27 (31) ◽  
pp. 1250179 ◽  
Author(s):  
H. NEMATOLLAHI ◽  
M. M. YAZDANPANAH ◽  
A. MIRJALILI

We compute the longitudinal structure function of the proton (FL) at the next-to-next-to-leading order (NNLO) approximation. For this purpose, we should know the flavor-singlet, non-singlet and gluon distribution functions of the proton. We use the chiral quark model (χQM) to determine these distributions. Finally, we compare the results of FL with the recent ZEUZ and H1 experimental data and some fitting parametrizations. Our results are in good agreement with the data and the related fittings.


1994 ◽  
Vol 09 (36) ◽  
pp. 3393-3402 ◽  
Author(s):  
H. NAVELET ◽  
R. PESCHANSKI ◽  
S. WALLON

We discuss the phenomenological extraction of the leading j-plane singularity from singlet structure functions Fs estimated at small x. Using a saddle point method we show that [Formula: see text] is a suitable observable for this purpose in the region x≤10−2. As an application, we confront and distinguish in a model-independent way structure function parametrizations coming from two different QCD evolution equations, namely the Lipatov (or BFKL) equation and the Gribov-Lipatov-Altarelli-Parisi (or GLAP) equation. Recent results on the proton structure function F2 at HERA are discussed in this framework.


2009 ◽  
Vol 18 (01) ◽  
pp. 131-140 ◽  
Author(s):  
G. R. BOROUN

We present an analytic formula to extract the longitudinal structure function in the next-to-leading order of the perturbation theory at low x, from the Regge-like behavior of the gluon distribution and the structure function at this limit. In this approach, the longitudinal structure function has the hard-Pomeron behavior. The determined values are compared with the H1 data and MRST model. All results can consistently be described within the framework of perturbative QCD, which essentially show increases as x decreases.


2018 ◽  
Vol 33 (08) ◽  
pp. 1850046 ◽  
Author(s):  
D. K. Choudhury ◽  
Baishali Saikia

Froissart bound implies that the total proton–proton cross-section (or equivalently proton structure function) cannot rise faster than [Formula: see text]. Compatibility of such behavior with the notion of self-similarity in proton structure function was suggested by us sometime back. In the present work, we generalize and improve it further by considering more recent self-similarity based models of proton structure functions and compare with recent data as well as with the model of Block, Durand, Ha and McKay.


Sign in / Sign up

Export Citation Format

Share Document