Investigating Mesoscopic Inductance-coupled Double L-C Circuits with Projection Operator and IWOP Technique

2015 ◽  
Vol 54 (9) ◽  
pp. 3331-3339
Author(s):  
Xiu-Xia Wang
1963 ◽  
Vol 18 (4) ◽  
pp. 531-538
Author(s):  
Dallas T. Hayes

Localized solutions of the BETHE—GOLDSTONE equation for two nucleons in nuclear matter are examined as a function of the center-of-mass momentum (c. m. m.) of the two nucleons. The equation depends upon the c. m. m. as parameter due to the dependence upon the c. m. m. of the projection operator appearing in the equation. An analytical solution of the equation is obtained for a non-local but separable potential, whereby a numerical solution is also obtained. An approximate solution for small c. m. m. is calculated for a square-well potential. In the range of the approximation the two analytical solutions agree exactly.


Author(s):  
YOUFA LI ◽  
TAO QIAN

A sequence of special functions in Hardy space [Formula: see text] are constructed from Cauchy kernel on unit disk 𝔻. Applying projection operator of the sequence of functions leads to an analytic sampling approximation to f, any given function in [Formula: see text]. That is, f can be approximated by its analytic samples in 𝔻s. Under a mild condition, f is approximated exponentially by its analytic samples. By the analytic sampling approximation, a signal in [Formula: see text] can be approximately decomposed into components of positive instantaneous frequency. Using circular Hilbert transform, we apply the approximation scheme in [Formula: see text] to Ls(𝕋2) such that a signal in Ls(𝕋2) can be approximated by its analytic samples on ℂs. A numerical experiment is carried out to illustrate our results.


2016 ◽  
Vol 139 ◽  
pp. 120-129 ◽  
Author(s):  
Sumedh M. Joshi ◽  
Peter J. Diamessis ◽  
Derek T. Steinmoeller ◽  
Marek Stastna ◽  
Greg N. Thomsen

Author(s):  
Joseph Kuo ◽  
Jason L. Granstedt ◽  
Umberto Villa ◽  
Mark A. Anastasio

Sign in / Sign up

Export Citation Format

Share Document