Zur Lösung der BETHE-GOLDSTONE-Gleichung bei nicht-verschwindendem Gesamtimpuls I

1963 ◽  
Vol 18 (4) ◽  
pp. 531-538
Author(s):  
Dallas T. Hayes

Localized solutions of the BETHE—GOLDSTONE equation for two nucleons in nuclear matter are examined as a function of the center-of-mass momentum (c. m. m.) of the two nucleons. The equation depends upon the c. m. m. as parameter due to the dependence upon the c. m. m. of the projection operator appearing in the equation. An analytical solution of the equation is obtained for a non-local but separable potential, whereby a numerical solution is also obtained. An approximate solution for small c. m. m. is calculated for a square-well potential. In the range of the approximation the two analytical solutions agree exactly.

1963 ◽  
Vol 18 (5) ◽  
pp. 559-569
Author(s):  
Dallas T. Hayes

The investigation of the localized solutions of the BETHE—GOLDSTONE equation begun in a previous paper1 is continued for the case where the two-nucleon potential contains a hard-core. The presence of the hard-core in the potential necessitates the use of another method of solution of the B.G.Gl. as that used in I. Using a squarewell for the attractive part of the potential a numerical solution of the equation is obtained. As was the case without hard-core the localized solution as a function of the center-of-mass momentum (c. m. m.) of the nucleon pair exists only in the immediate vicinity of zero c. m. m. The hard-core results in a decrease of the energy-separation of the energy of the solution as measured from the double FERMI-Energy. The dependence of the energy of the solution upon the c. m. m. is similar to that obtained for a square-well potential without hard-core.


2018 ◽  
Vol 8 (10) ◽  
pp. 1779 ◽  
Author(s):  
Xinnan Liu ◽  
Jianjun Wang ◽  
Weijie Li

This paper presents the dynamic analytical solution of a piezoelectric stack utilized in an actuator and a generator based on the linear piezo-elasticity theory. The solutions for two different kinds of piezoelectric stacks under external load were obtained using the displacement method. The effects of load frequency and load amplitude on the dynamic characteristics of the stacks were discussed. The analytical solutions were validated using the available experimental results in special cases. The proposed model is able not only to predict the output properties of the devices, but also to reflect the inner electrical and mechanical components, which is helpful for designing piezoelectric actuators and generators in a comprehensive manner.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck

Abstract Analytical solutions for thermal conduction problems are extremely important, particularly for verification of numerical codes. Temperatures and heat fluxes can be calculated very precisely, normally to eight or ten significant figures, even in situations involving large temperature gradients. It can be convenient to have a general analytical solution for a transient conduction problem in rectangular coordinates. The general solution is based on the principle that the three primary types of boundary conditions (prescribed temperature, prescribed heat flux, and convective) can all be handled using convective boundary conditions. A large convection coefficient closely approximates a prescribed temperature boundary condition and a very low convection coefficient closely approximates an insulated boundary condition. Since a dimensionless solution is used in this research, the effect of various values of dimensionless convection coefficients, or Biot number, are explored. An understandable concern with a general analytical solution is the effect of the choice of convection coefficients on the precision of the solution, since the primary motivation for using analytical solutions is the precision offered. An investigation is made in this study to determine the effects of the choices of large and small convection coefficients on the precision of the analytical solutions generated by the general convective formulation. Results are provided, in tablular and graphical form, to illustrate the effects of the choices of convection coefficients on the precision of the general analytical solution.


Author(s):  
Shuangbiao Liu ◽  
W. Wayne Chen ◽  
Diann Y. Hua

Step bearings are frequently used in industry for better load capacity. Analytical solutions to the Rayleigh step bearing and a rectangular slider with a finite width are available in literature, but none for a fan-shaped thrust step bearing. This study starts with a known solution to the Laplace equation in a cylindrical coordinate system, which is in the form of infinite summation. An analytical solution to pressure is derived in this paper for hydrodynamic lubrication problems encountered in the fan-shaped step bearing. The presented solutions can be useful for designers to maximize bearing performance as well as for researchers to benchmark numerical lubrication models.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Alvaro H. Salas S ◽  
Jairo E. Castillo H ◽  
Darin J. Mosquera P

In this paper, a new analytical solution to the undamped Helmholtz oscillator equation in terms of the Weierstrass elliptic function is reported. The solution is given for any arbitrary initial conditions. A comparison between our new solution and the numerical approximate solution using the Range Kutta approach is performed. We think that the methodology employed here may be useful in the study of several nonlinear problems described by a differential equation of the form z ″ = F z in the sense that z = z t . In this context, our solutions are applied to some physical applications such as the signal that can propagate in the LC series circuits. Also, these solutions were used to describe and investigate some oscillations in plasma physics such as oscillations in electronegative plasma with Maxwellian electrons and negative ions.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1174 ◽  
Author(s):  
Yutaka Okabe ◽  
Akira Shudo

This is a tutorial for the mathematical model of the spread of epidemic diseases. Beginning with the basic mathematics, we introduce the susceptible-infected-recovered (SIR) model. Subsequently, we present the numerical and exact analytical solutions of the SIR model. The analytical solution is emphasized. Additionally, we treat the generalization of the SIR model including births and natural deaths.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 987 ◽  
Author(s):  
A. A. Alderremy ◽  
Hassan Khan ◽  
Rasool Shah ◽  
Shaban Aly ◽  
Dumitru Baleanu

This article is dealing with the analytical solution of Fornberg–Whitham equations in fractional view of Caputo operator. The effective method among the analytical techniques, natural transform decomposition method, is implemented to handle the solutions of the proposed problems. The approximate analytical solutions of nonlinear numerical problems are determined to confirm the validity of the suggested technique. The solution of the fractional-order problems are investigated for the suggested mathematical models. The solutions-graphs are then plotted to understand the effectiveness of fractional-order mathematical modeling over integer-order modeling. It is observed that the derived solutions have a closed resemblance with the actual solutions. Moreover, using fractional-order modeling various dynamics can be analyzed which can provide sophisticated information about physical phenomena. The simple and straight-forward procedure of the suggested technique is the preferable point and thus can be used to solve other nonlinear fractional problems.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988141989071
Author(s):  
Wei Guo ◽  
Changrong Cai ◽  
Mantian Li ◽  
Fusheng Zha ◽  
Pengfei Wang ◽  
...  

Leg stiffness plays a critical role in legged robots’ speed regulation. However, the analytic solutions to the differential equations of the stance phase do not exist, of course not for the exact analytical solution of stiffness. In view of the challenge in dealing with every circumstance by numerical methods, which have been adopted to tabulate approximate answers, the “harmonic motion model” was used as approximation of the stance phase. However, the wide range leg sweep angles and small fluctuations of the “center of mass” in fast movement were overlooked. In this article, we raise a “triangle motion model” with uniform forward speed, symmetric movement, and straight-line center of mass trajectory. The characters are then shifted to a quadratic equation by Taylor expansion and obtain an approximate analytical solution. Both the numerical simulation and ADAMS-Matlab co-simulation of the control system show the accuracy of the triangle motion model method in predicting leg stiffness even in the ultra-high-speed case, and it is also adaptable to low-speed cases. The study illuminates the relationship between leg stiffness and speed, and the approximation model of the planar spring–mass system may serve as an analytical tool for leg stiffness estimation in high-speed locomotion.


1976 ◽  
Vol 43 (4) ◽  
pp. 684-688 ◽  
Author(s):  
C. D. Bailey

The theory of Ritz is applied to the equation that Hamilton called the “Law of Varying Action.” Direct analytical solutions are obtained for the transient motion of beams, both conservative and nonconservative. The results achieved are compared to exact solutions obtained by the use of rigorously exact free-vibration modes in the differential equations of Lagrange and to an approximate solution obtained through the application of Gurtin’s principles for linear elastodynamics. A brief discussion of Hamilton’s law and Hamilton’s principle is followed by examples of results for both free-free and cantilever beams with various loadings.


Sign in / Sign up

Export Citation Format

Share Document