scholarly journals Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers

2007 ◽  
Vol 27 (2) ◽  
pp. 215-245 ◽  
Author(s):  
Huy Tài Hà ◽  
Adam Van Tuyl
2017 ◽  
Vol 10 (03) ◽  
pp. 1750061
Author(s):  
Somayeh Moradi

In this paper, we study the regularity and the projective dimension of the Stanley–Reisner ring of a [Formula: see text]-decomposable simplicial complex and explain these invariants with a recursive formula. To this aim, the graded Betti numbers of decomposable monomial ideals which is the dual concept for [Formula: see text]-decomposable simplicial complexes are studied and an inductive formula for the Betti numbers is given. As a corollary, for a shellable simplicial complex [Formula: see text], a formula for the regularity of the Stanley–Reisner ring of [Formula: see text] is presented. Finally, for a chordal clutter [Formula: see text], an upper bound for [Formula: see text] is given in terms of the regularities of edge ideals of some chordal clutters which are minors of [Formula: see text].


1999 ◽  
Vol 153 ◽  
pp. 141-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi

AbstractA componentwise linear ideal is a graded ideal I of a polynomial ring such that, for each degree q, the ideal generated by all homogeneous polynomials of degree q belonging to I has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal IΔ arising from a simplicial complex Δ is componentwise linear if and only if the Alexander dual of Δ is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.


2007 ◽  
Vol 187 ◽  
pp. 115-156 ◽  
Author(s):  
Christopher A. Francisco ◽  
Adam Van Tuyl

AbstractLet R = k[x1,…,xn] be a polynomial ring over a field k. Let J = {j1,…,jt} be a subset of {1,…, n}, and let mJ ⊂ R denote the ideal (xj1,…,xjt). Given subsets J1,…,Js of {1,…, n} and positive integers a1,…,as, we study ideals of the form These ideals arise naturally, for example, in the study of fat points, tetrahedral curves, and Alexander duality of squarefree monomial ideals. Our main focus is determining when ideals of this form are componentwise linear. Using polymatroidality, we prove that I is always componentwise linear when s ≤ 3 or when Ji ∪ Jj = [n] for all i ≠ j. When s ≥ 4, we give examples to show that I may or may not be componentwise linear. We apply these results to ideals of small sets of general fat points in multiprojective space, and we extend work of Fatabbi, Lorenzini, Valla, and the first author by computing the graded Betti numbers in the s = 2 case. Since componentwise linear ideals satisfy the Multiplicity Conjecture of Herzog, Huneke, and Srinivasan when char(k) = 0, our work also yields new cases in which this conjecture holds.


10.37236/125 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Michael Goff

We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.


10.37236/8810 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Margherita Barile ◽  
Antonio Macchia

We present an explicit construction of minimal cellular resolutions for the edge ideals of forests, based on discrete Morse theory. In particular, the generators of the free modules are subsets of the generators of the modules in the Lyubeznik resolution. This procedure allows us to ease the computation of the graded Betti numbers and the projective dimension.


2012 ◽  
Author(s):  
Oscar Fernández Ramos

2019 ◽  
Vol 47 (4) ◽  
pp. 1690-1698 ◽  
Author(s):  
Shahnawaz Ahmad Rather ◽  
Pavinder Singh

10.37236/69 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Uwe Nagel ◽  
Victor Reiner

We present two new problems on lower bounds for Betti numbers of the minimal free resolution for monomial ideals generated in a fixed degree. The first concerns any such ideal and bounds the total Betti numbers, while the second concerns ideals that are quadratic and bihomogeneous with respect to two variable sets, but gives a more finely graded lower bound. These problems are solved for certain classes of ideals that generalize (in two different directions) the edge ideals of threshold graphs and Ferrers graphs. In the process, we produce particularly simple cellular linear resolutions for strongly stable and squarefree strongly stable ideals generated in a fixed degree, and combinatorial interpretations for the Betti numbers of other classes of ideals, all of which are independent of the coefficient field.


2006 ◽  
Vol 13 (04) ◽  
pp. 711-720 ◽  
Author(s):  
Masako Kokubo ◽  
Takayuki Hibi

The concept of the weakly polymatroidal ideal, which generalizes both the polymatroidal ideal and the prestable ideal, is introduced. A fundamental fact is that every weakly polymatroidal ideal has a linear resolution. One of the typical examples of weakly polymatroidal ideals arises from finite partially ordered sets. We associate each weakly polymatroidal ideal with a finite sequence, alled the polymatroidal sequence, which will be useful for the computation of graded Betti numbers of weakly polymatroidal ideals as well as for the construction of weakly polymatroidal ideals.


2006 ◽  
Vol 128 (3) ◽  
pp. 573-605 ◽  
Author(s):  
David Eisenbud ◽  
C. (Craig) Huneke ◽  
Bernd Ulrich

Sign in / Sign up

Export Citation Format

Share Document