scholarly journals Componentwise linear ideals

1999 ◽  
Vol 153 ◽  
pp. 141-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi

AbstractA componentwise linear ideal is a graded ideal I of a polynomial ring such that, for each degree q, the ideal generated by all homogeneous polynomials of degree q belonging to I has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal IΔ arising from a simplicial complex Δ is componentwise linear if and only if the Alexander dual of Δ is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.


2007 ◽  
Vol 187 ◽  
pp. 115-156 ◽  
Author(s):  
Christopher A. Francisco ◽  
Adam Van Tuyl

AbstractLet R = k[x1,…,xn] be a polynomial ring over a field k. Let J = {j1,…,jt} be a subset of {1,…, n}, and let mJ ⊂ R denote the ideal (xj1,…,xjt). Given subsets J1,…,Js of {1,…, n} and positive integers a1,…,as, we study ideals of the form These ideals arise naturally, for example, in the study of fat points, tetrahedral curves, and Alexander duality of squarefree monomial ideals. Our main focus is determining when ideals of this form are componentwise linear. Using polymatroidality, we prove that I is always componentwise linear when s ≤ 3 or when Ji ∪ Jj = [n] for all i ≠ j. When s ≥ 4, we give examples to show that I may or may not be componentwise linear. We apply these results to ideals of small sets of general fat points in multiprojective space, and we extend work of Fatabbi, Lorenzini, Valla, and the first author by computing the graded Betti numbers in the s = 2 case. Since componentwise linear ideals satisfy the Multiplicity Conjecture of Herzog, Huneke, and Srinivasan when char(k) = 0, our work also yields new cases in which this conjecture holds.



2008 ◽  
Vol 190 ◽  
pp. 35-61 ◽  
Author(s):  
Satoshi Murai ◽  
Pooja Singla

Let K be a field, S a polynomial ring and E an exterior algebra over K, both in a finite set of variables. We study rigidity properties of the graded Betti numbers of graded ideals in S and E when passing to their generic initial ideals. First, we prove that if the graded Betti numbers for some i > 1 and k ≥ 0, then for all q ≥ i, where I ⊂ S is a graded ideal. Second, we show that if for some i > 1 and k ≥ 0, then for all q ≥ 1, where I ⊂ E is a graded ideal. In addition, it will be shown that the graded Betti numbers for all i ≥ 1 if and only if I(k) and I(k+1) have a linear resolution. Here I(d) is the ideal generated by all homogeneous elements in I of degree d, and R can be either the polynomial ring or the exterior algebra.



10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.



10.37236/2987 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Sara Saeedi Madani ◽  
Dariush Kiani

We characterize all pairs of graphs $(G_1,G_2)$, for which the binomial edge ideal $J_{G_1,G_2}$ has linear relations. We show that $J_{G_1,G_2}$ has a linear resolution if and only if $G_1$ and $G_2$ are complete and one of them is just an edge. We also compute some of the graded Betti numbers of the binomial edge ideal of a pair of graphs with respect to some graphical terms. In particular, we show that for every pair of graphs $(G_1,G_2)$ with girth (i.e. the length of a shortest cycle in the graph) greater than 3, $\beta_{i,i+2}(J_{G_1,G_2})=0$, for all $i$. Moreover, we give a lower bound for the Castelnuovo-Mumford regularity of any binomial edge ideal $J_{G_1,G_2}$ and hence the ideal of adjacent $2$-minors of a generic matrix. We also obtain an upper bound for the regularity of $J_{G_1,G_2}$, if $G_1$ is complete and $G_2$ is a closed graph.



2017 ◽  
Vol 10 (03) ◽  
pp. 1750061
Author(s):  
Somayeh Moradi

In this paper, we study the regularity and the projective dimension of the Stanley–Reisner ring of a [Formula: see text]-decomposable simplicial complex and explain these invariants with a recursive formula. To this aim, the graded Betti numbers of decomposable monomial ideals which is the dual concept for [Formula: see text]-decomposable simplicial complexes are studied and an inductive formula for the Betti numbers is given. As a corollary, for a shellable simplicial complex [Formula: see text], a formula for the regularity of the Stanley–Reisner ring of [Formula: see text] is presented. Finally, for a chordal clutter [Formula: see text], an upper bound for [Formula: see text] is given in terms of the regularities of edge ideals of some chordal clutters which are minors of [Formula: see text].



2016 ◽  
Vol 118 (1) ◽  
pp. 43 ◽  
Author(s):  
Somayeh Moradi ◽  
Fahimeh Khosh-Ahang

In this paper we study the Alexander dual of a vertex decomposable simplicial complex. We define the concept of a vertex splittable ideal and show that a simplicial complex $\Delta$ is vertex decomposable if and only if $I_{\Delta^{\vee}}$ is a vertex splittable ideal. Moreover, the properties of vertex splittable ideals are studied. As the main result, it is proved that any vertex splittable ideal has a Betti splitting and the graded Betti numbers of such ideals are explained with a recursive formula. As a corollary, recursive formulas for the regularity and projective dimension of $R/I_{\Delta}$, when $\Delta$ is a vertex decomposable simplicial complex, are given. Moreover, for a vertex decomposable graph $G$, a recursive formula for the graded Betti numbers of its vertex cover ideal is presented. In special cases, this formula is explained, when $G$ is chordal or a sequentially Cohen-Macaulay bipartite graph. Finally, among the other things, it is shown that an edge ideal of a graph is vertex splittable if and only if it has linear resolution.



2006 ◽  
Vol 13 (04) ◽  
pp. 711-720 ◽  
Author(s):  
Masako Kokubo ◽  
Takayuki Hibi

The concept of the weakly polymatroidal ideal, which generalizes both the polymatroidal ideal and the prestable ideal, is introduced. A fundamental fact is that every weakly polymatroidal ideal has a linear resolution. One of the typical examples of weakly polymatroidal ideals arises from finite partially ordered sets. We associate each weakly polymatroidal ideal with a finite sequence, alled the polymatroidal sequence, which will be useful for the computation of graded Betti numbers of weakly polymatroidal ideals as well as for the construction of weakly polymatroidal ideals.



2001 ◽  
Vol 89 (1) ◽  
pp. 117 ◽  
Author(s):  
V Reiner ◽  
V Welker

We give an elementary description of the maps in the linear strand of the minimal free resolution of a square-free monomial ideal, that is, the Stanley-Reisner ideal associated to a simplicial complex $\Delta$. The description is in terms of the homology of the canonical Alexander dual complex $\Delta^*$. As applications we are able to prove for monomial ideals and $j=1$ a conjecture of J. Herzog giving lower bounds on the number of $i$-syzygies in the linear strand of $j^{th}$-syzygy modules show that the maps in the linear strand can be written using only $\pm 1$ coefficients if $\Delta^*$ is a pseudomanifold exhibit an example where multigraded maps in the linear strand cannot be written using only $\pm 1$ coefficients compute the entire resolution explicitly when $\Delta^*$ is the complex of independent sets of a matroid



2019 ◽  
Vol 19 (10) ◽  
pp. 2050201
Author(s):  
Ibrahim Al-Ayyoub

Let [Formula: see text] be a monomial ideal in a polynomial ring with two indeterminates over a field. Assume [Formula: see text] is contained in the integral closure of some ideal that is generated by two elements from the generating set of [Formula: see text]. We produce sharp upper bounds for each of the reduction number and the Ratliff–Rush reduction number of the ideal [Formula: see text]. Under certain hypotheses, we give the exact values of these reduction numbers, and we provide an explicit method for obtaining these sharp upper bounds.



2015 ◽  
Vol 22 (spec01) ◽  
pp. 745-756 ◽  
Author(s):  
Rahim Rahmati-Asghar ◽  
Siamak Yassemi

In this paper we introduce a class of monomial ideals, called k-decomposable ideals. It is shown that the class of k-decomposable ideals is contained in the class of monomial ideals with linear quotients, and when k is large enough, the class of k-decomposable ideals is equal to the class of ideals with linear quotients. In addition, it is shown that a d-dimensional simplicial complex is k-decomposable if and only if the Stanley-Reisner ideal of its Alexander dual is a k-decomposable ideal, where k ≤ d. Moreover, it is shown that every k-decomposable ideal is componentwise k-decomposable.



Sign in / Sign up

Export Citation Format

Share Document