scholarly journals Optimal Betti Numbers of Forest Ideals

10.37236/125 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Michael Goff

We prove a tight lower bound on the algebraic Betti numbers of tree and forest ideals and an upper bound on certain graded Betti numbers of squarefree monomial ideals.

10.37236/2987 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Sara Saeedi Madani ◽  
Dariush Kiani

We characterize all pairs of graphs $(G_1,G_2)$, for which the binomial edge ideal $J_{G_1,G_2}$ has linear relations. We show that $J_{G_1,G_2}$ has a linear resolution if and only if $G_1$ and $G_2$ are complete and one of them is just an edge. We also compute some of the graded Betti numbers of the binomial edge ideal of a pair of graphs with respect to some graphical terms. In particular, we show that for every pair of graphs $(G_1,G_2)$ with girth (i.e. the length of a shortest cycle in the graph) greater than 3, $\beta_{i,i+2}(J_{G_1,G_2})=0$, for all $i$. Moreover, we give a lower bound for the Castelnuovo-Mumford regularity of any binomial edge ideal $J_{G_1,G_2}$ and hence the ideal of adjacent $2$-minors of a generic matrix. We also obtain an upper bound for the regularity of $J_{G_1,G_2}$, if $G_1$ is complete and $G_2$ is a closed graph.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750061
Author(s):  
Somayeh Moradi

In this paper, we study the regularity and the projective dimension of the Stanley–Reisner ring of a [Formula: see text]-decomposable simplicial complex and explain these invariants with a recursive formula. To this aim, the graded Betti numbers of decomposable monomial ideals which is the dual concept for [Formula: see text]-decomposable simplicial complexes are studied and an inductive formula for the Betti numbers is given. As a corollary, for a shellable simplicial complex [Formula: see text], a formula for the regularity of the Stanley–Reisner ring of [Formula: see text] is presented. Finally, for a chordal clutter [Formula: see text], an upper bound for [Formula: see text] is given in terms of the regularities of edge ideals of some chordal clutters which are minors of [Formula: see text].


1999 ◽  
Vol 153 ◽  
pp. 141-153 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi

AbstractA componentwise linear ideal is a graded ideal I of a polynomial ring such that, for each degree q, the ideal generated by all homogeneous polynomials of degree q belonging to I has a linear resolution. Examples of componentwise linear ideals include stable monomial ideals and Gotzmann ideals. The graded Betti numbers of a componentwise linear ideal can be determined by the graded Betti numbers of its components. Combinatorics on squarefree componentwise linear ideals will be especially studied. It turns out that the Stanley-Reisner ideal IΔ arising from a simplicial complex Δ is componentwise linear if and only if the Alexander dual of Δ is sequentially Cohen-Macaulay. This result generalizes the theorem by Eagon and Reiner which says that the Stanley-Reisner ideal of a simplicial complex has a linear resolution if and only if its Alexander dual is Cohen-Macaulay.


2007 ◽  
Vol 187 ◽  
pp. 115-156 ◽  
Author(s):  
Christopher A. Francisco ◽  
Adam Van Tuyl

AbstractLet R = k[x1,…,xn] be a polynomial ring over a field k. Let J = {j1,…,jt} be a subset of {1,…, n}, and let mJ ⊂ R denote the ideal (xj1,…,xjt). Given subsets J1,…,Js of {1,…, n} and positive integers a1,…,as, we study ideals of the form These ideals arise naturally, for example, in the study of fat points, tetrahedral curves, and Alexander duality of squarefree monomial ideals. Our main focus is determining when ideals of this form are componentwise linear. Using polymatroidality, we prove that I is always componentwise linear when s ≤ 3 or when Ji ∪ Jj = [n] for all i ≠ j. When s ≥ 4, we give examples to show that I may or may not be componentwise linear. We apply these results to ideals of small sets of general fat points in multiprojective space, and we extend work of Fatabbi, Lorenzini, Valla, and the first author by computing the graded Betti numbers in the s = 2 case. Since componentwise linear ideals satisfy the Multiplicity Conjecture of Herzog, Huneke, and Srinivasan when char(k) = 0, our work also yields new cases in which this conjecture holds.


10.37236/69 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Uwe Nagel ◽  
Victor Reiner

We present two new problems on lower bounds for Betti numbers of the minimal free resolution for monomial ideals generated in a fixed degree. The first concerns any such ideal and bounds the total Betti numbers, while the second concerns ideals that are quadratic and bihomogeneous with respect to two variable sets, but gives a more finely graded lower bound. These problems are solved for certain classes of ideals that generalize (in two different directions) the edge ideals of threshold graphs and Ferrers graphs. In the process, we produce particularly simple cellular linear resolutions for strongly stable and squarefree strongly stable ideals generated in a fixed degree, and combinatorial interpretations for the Betti numbers of other classes of ideals, all of which are independent of the coefficient field.


1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Sign in / Sign up

Export Citation Format

Share Document