scholarly journals A homotopy category for graphs

Author(s):  
Tien Chih ◽  
Laura Scull
Keyword(s):  
2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.


1991 ◽  
Vol 40 (3) ◽  
pp. 265-274 ◽  
Author(s):  
K.A. Hardie ◽  
K.H. Kamps ◽  
T. Porter

Author(s):  
Sergio Estrada ◽  
James Gillespie

We define the projective stable category of a coherent scheme. It is the homotopy category of an abelian model structure on the category of unbounded chain complexes of quasi-coherent sheaves. We study the cofibrant objects of this model structure, which are certain complexes of flat quasi-coherent sheaves satisfying a special acyclicity condition.


Author(s):  
Dennis Gaitsgory ◽  
Jacob Lurie

The ℓ-adic product formula discussed in Chapter 4 will need to make use of analogous structures, which are simply not visible at the level of the triangulated category Dℓ(X). This chapter attempts to remedy the situation by introducing a mathematical object Shvℓ (X), which refines the triangulated category Dℓ (X). This object is not itself a category but instead is an example of an ∞-category, which is referred to as the ∞-category of ℓ-adic sheaves on X. The triangulated category Dℓ (X) can be identified with the homotopy category of Shvℓ (X); in particular, the objects of Dℓ (X) and Shvℓ (X) are the same. However, there is a large difference between commutative algebra objects of Dℓ (X) and commutative algebra objects of the ∞-category Shvℓ (X). We can achieve (b') by viewing the complex B as a commutative algebra of the latter sort.


Sign in / Sign up

Export Citation Format

Share Document