scholarly journals The projective stable category of a coherent scheme

Author(s):  
Sergio Estrada ◽  
James Gillespie

We define the projective stable category of a coherent scheme. It is the homotopy category of an abelian model structure on the category of unbounded chain complexes of quasi-coherent sheaves. We study the cofibrant objects of this model structure, which are certain complexes of flat quasi-coherent sheaves satisfying a special acyclicity condition.

Author(s):  
Aimin Xu

Let [Formula: see text] be either the category of [Formula: see text]-modules or the category of chain complexes of [Formula: see text]-modules and [Formula: see text] a cofibrantly generated hereditary abelian model structure on [Formula: see text]. First, we get a new cofibrantly generated model structure on [Formula: see text] related to [Formula: see text] for any positive integer [Formula: see text], and hence, one can get new algebraic triangulated categories. Second, it is shown that any [Formula: see text]-strongly Gorenstein projective module gives rise to a projective cotorsion pair cogenerated by a set. Finally, let [Formula: see text] be an [Formula: see text]-module with finite flat dimension and [Formula: see text] a positive integer, if [Formula: see text] is an exact sequence of [Formula: see text]-modules with every [Formula: see text] Gorenstein injective, then [Formula: see text] is injective.


2018 ◽  
Vol 107 (02) ◽  
pp. 181-198
Author(s):  
JAMES GILLESPIE

We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring that is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo–Gillespie–Hovey. It is also compatible with the notion of $n$ -coherent rings introduced by Bravo–Perez. So a $0$ -coherent AC-Gorenstein ring is precisely a usual Gorenstein ring in the sense of Iwanaga, while a $1$ -coherent AC-Gorenstein ring is precisely a Ding–Chen ring. We show that any AC-Gorenstein ring admits a stable module category that is compactly generated and is the homotopy category of two Quillen equivalent abelian model category structures. One is projective with cofibrant objects that are Gorenstein AC-projective modules while the other is an injective model structure with fibrant objects that are Gorenstein AC-injectives.


Author(s):  
Christian Haesemeyer ◽  
Charles A. Weibel

This chapter provides the 𝔸1-local projective model structure on the categories of simplicial presheaves and simplicial presheaves with transfers. These model categories, written as Δ‎opPshv(Sm)𝔸1 and Δ‎op PST(Sm)𝔸1, are first defined. Their respective homotopy categories are Ho(Sm) and the full subcategory DM eff nis ≤0 of DM eff nis. Afterward, this chapter introduces the notions of radditive presheaves and ̅Δ‎-closed classes, and develops their basic properties. The theory of ̅Δ‎-closed classes is needed because the extension of symmetric power functors to simplicial radditive presheaves is not a left adjoint. This chapter uses many of the basic ideas of Quillen model categories, which is a category equipped with three classes of morphisms satisfying five axioms. In addition, much of the material in this chapter is based upon the technique of Bousfield localization.


2021 ◽  
pp. 1-38
Author(s):  
Mindy Huerta ◽  
Octavio Mendoza ◽  
Marco A. Pérez

Abstract We present the concept of cotorsion pairs cut along subcategories of an abelian category. This provides a generalization of complete cotorsion pairs, and represents a general framework to find approximations restricted to certain subcategories. We also exhibit some connections between cut cotorsion pairs and Auslander–Buchweitz approximation theory, by considering relative analogs for Frobenius pairs and Auslander–Buchweitz contexts. Several applications are given in the settings of relative Gorenstein homological algebra, chain complexes, and quasi-coherent sheaves, as well as to characterize some important results on the Finitistic Dimension Conjecture, the existence of right adjoints of quotient functors by Serre subcategories, and the description of cotorsion pairs in triangulated categories as co-t-structures.


2017 ◽  
Vol 59 (3) ◽  
pp. 685-703 ◽  
Author(s):  
AIMIN XU

AbstractGiven a complete hereditary cotorsion pair$(\mathcal{X}, \mathcal{Y})$, we introduce the concept of$(\mathcal{X}, \mathcal{X} \cap \mathcal{Y})$-Gorenstein projective modules and study its stability properties. As applications, we first get two model structures related to Gorenstein flat modules over a right coherent ring. Secondly, for any non-negative integern, we construct a cofibrantly generated model structure on Mod(R) in which the class of fibrant objects are the modules of Gorenstein injective dimension ≤nover a left Noetherian ringR. Similarly, ifRis a left coherent ring in which all flat leftR-modules have finite projective dimension, then there is a cofibrantly generated model structure on Mod(R) such that the cofibrant objects are the modules of Gorenstein projective dimension ≤n. These structures have their analogous in the category of chain complexes.


2010 ◽  
Vol 53 (3) ◽  
pp. 675-696 ◽  
Author(s):  
James Gillespie ◽  
Mark Hovey

AbstractIn a paper from 2002, Hovey introduced the Gorenstein projective and Gorenstein injective model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce: the Gorenstein flat model structure. The homotopy category with respect to each of these is called the stable module category of R. If such a ring R has finite global dimension, the graded ring R[x]/(x2) is Gorenstein and the three associated Gorenstein model structures on R[x]/(x2)-Mod, the category of graded R[x]/(x2)-modules, are nothing more than the usual projective, injective and flat model structures on Ch(R), the category of chain complexes of R-modules. Although these correspondences only recover these model structures on Ch(R) when R has finite global dimension, we can set R = ℤ and use general techniques from model category theory to lift the projective model structure from Ch(ℤ) to Ch(R) for an arbitrary ring R. This shows that homological algebra is a special case of Gorenstein homological algebra. Moreover, this method of constructing and lifting model structures carries through when ℤ[x]/(x2) is replaced by many other graded Gorenstein rings (or Hopf algebras, which lead to monoidal model structures). This gives us a natural way to generalize both chain complexes over a ring R and the derived category of R and we give some examples of such generalizations.


2019 ◽  
Vol 125 (2) ◽  
pp. 185-198
Author(s):  
David White ◽  
Donald Yau

We prove that the arrow category of a monoidal model category, equipped with the pushout product monoidal structure and the projective model structure, is a monoidal model category. This answers a question posed by Mark Hovey, in the course of his work on Smith ideals. As a corollary, we prove that the projective model structure in cubical homotopy theory is a monoidal model structure. As illustrations we include numerous examples of non-cofibrantly generated monoidal model categories, including chain complexes, small categories, pro-categories, and topological spaces.


1982 ◽  
Vol 47 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Marek Golasiński ◽  
Grzegorz Gromadzki

2017 ◽  
Vol 16 (01) ◽  
pp. 1750015
Author(s):  
Esmaeil Hosseini

Let [Formula: see text] be a quasi-compact and semi-separated scheme. If every flat quasi-coherent sheaf has finite cotorsion dimension, we prove that [Formula: see text] is [Formula: see text]-perfect for some [Formula: see text]. If [Formula: see text] is coherent and [Formula: see text]-perfect (not necessarily of finite Krull dimension), we prove that every flat quasi-coherent sheaf has finite pure injective dimension. Also, we show that there is an equivalence [Formula: see text] of homotopy categories, whenever [Formula: see text] is the homotopy category of pure injective flat quasi-coherent sheaves and [Formula: see text] is the pure derived category of flat quasi-coherent sheaves.


Sign in / Sign up

Export Citation Format

Share Document