scholarly journals Camera-Based Tracking of Floating Objects using Fixed-wing UAVs

2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Håkon Hagen Helgesen ◽  
Torleiv H. Bryne ◽  
Erik F. Wilthil ◽  
Tor Arne Johansen

AbstractThis article concerns tracking of floating objects using fixed-wing UAVs with a monocular thermal camera. Target tracking from an agile aerial vehicle is challenging because uncertainty in the UAV pose negatively affects the accuracy of the measurements obtained through thermal images. Consequently, the accuracy of the tracking estimates is degraded if navigation uncertainty is neglected. This is especially relevant for the estimated target covariance since inconsistency is a likely consequence. A tracking system based on the Schmidt-Kalman filter is proposed to mitigate navigation uncertainty. Images gathered with an uncertain UAV pose are weighted less than images captured with a reliable pose. The UAV pose is estimated independently in a multiplicative extended Kalman filter where the estimated covariance matrix is a measure of the uncertainty. The method is compared experimentally with two traditional alternatives based on the extended Kalman filter. The results show that the proposed method performs better with respect to consistency and accuracy.

Algorithms ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 40 ◽  
Author(s):  
Javier Gomez-Avila ◽  
Carlos Villaseñor ◽  
Jesus Hernandez-Barragan ◽  
Nancy Arana-Daniel ◽  
Alma Y. Alanis ◽  
...  

Flying robots have gained great interest because of their numerous applications. For this reason, the control of Unmanned Aerial Vehicles (UAVs) is one of the most important challenges in mobile robotics. These kinds of robots are commonly controlled with Proportional-Integral-Derivative (PID) controllers; however, traditional linear controllers have limitations when controlling highly nonlinear and uncertain systems such as UAVs. In this paper, a control scheme for the pose of a quadrotor is presented. The scheme presented has the behavior of a PD controller and it is based on a Multilayer Perceptron trained with an Extended Kalman Filter. The Neural Network is trained online in order to ensure adaptation to changes in the presence of dynamics and uncertainties. The control scheme is tested in real time experiments in order to show its effectiveness.


2014 ◽  
Vol 889-890 ◽  
pp. 658-661
Author(s):  
Huan Xin Peng ◽  
Wen Kai Wang ◽  
Bin Liu

In the paper, we address the problem of target tracking with quantized communication. While the probabilistic distributed function of the measurement is unknown, in order to simplify the calculations of target tracking system and improve the accuracy of estimation, we propose a Kalman filter under uniformly probabilistic quantization, and analyze the performance of the probabilistic quantization Kalman filter. Simulations results are provided to verify the performance of the target tracking system under uniformly probabilistic quantization.


2017 ◽  
Vol 9 (3) ◽  
pp. 169-186 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Wei Meng ◽  
Lihua Xie ◽  
Rodney Teo

This article puts forward an indirect cooperative relative localization method to estimate the position of unmanned aerial vehicles (UAVs) relative to their neighbors based solely on distance and self-displacement measurements in GPS denied environments. Our method consists of two stages. Initially, assuming no knowledge about its own and neighbors’ states and limited by the environment or task constraints, each unmanned aerial vehicle (UAV) solves an active 2D relative localization problem to obtain an estimate of its initial position relative to a static hovering quadcopter (a.k.a. beacon), which is subsequently refined by the extended Kalman filter to account for the noise in distance and displacement measurements. Starting with the refined initial relative localization guess, the second stage generalizes the extended Kalman filter strategy to the case where all unmanned aerial vehicles (UAV) move simultaneously. In this stage, each unmanned aerial vehicle (UAV) carries out cooperative localization through the inter-unmanned aerial vehicle distance given by ultra-wideband and exchanging the self-displacements of neighboring unmanned aerial vehicles (UAV). Extensive simulations and flight experiments are presented to corroborate the effectiveness of our proposed relative localization initialization strategy and algorithm.


Sign in / Sign up

Export Citation Format

Share Document