Aerodynamic parameter estimation of an Unmanned Aerial Vehicle based on extended kalman filter and its higher order approach

Author(s):  
Li Meng ◽  
Liu Li ◽  
S.M. Veres
2017 ◽  
Vol 9 (3) ◽  
pp. 169-186 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Wei Meng ◽  
Lihua Xie ◽  
Rodney Teo

This article puts forward an indirect cooperative relative localization method to estimate the position of unmanned aerial vehicles (UAVs) relative to their neighbors based solely on distance and self-displacement measurements in GPS denied environments. Our method consists of two stages. Initially, assuming no knowledge about its own and neighbors’ states and limited by the environment or task constraints, each unmanned aerial vehicle (UAV) solves an active 2D relative localization problem to obtain an estimate of its initial position relative to a static hovering quadcopter (a.k.a. beacon), which is subsequently refined by the extended Kalman filter to account for the noise in distance and displacement measurements. Starting with the refined initial relative localization guess, the second stage generalizes the extended Kalman filter strategy to the case where all unmanned aerial vehicles (UAV) move simultaneously. In this stage, each unmanned aerial vehicle (UAV) carries out cooperative localization through the inter-unmanned aerial vehicle distance given by ultra-wideband and exchanging the self-displacements of neighboring unmanned aerial vehicles (UAV). Extensive simulations and flight experiments are presented to corroborate the effectiveness of our proposed relative localization initialization strategy and algorithm.


2020 ◽  
Vol 100 ◽  
pp. 322-333 ◽  
Author(s):  
Mathaus Ferreira da Silva ◽  
Leonardo M. Honório ◽  
Andre Luis M. Marcato ◽  
Vinicius F. Vidal ◽  
Murillo F. Santos

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2855 ◽  
Author(s):  
Nak Ko ◽  
Wonkeun Youn ◽  
In Choi ◽  
Gyeongsub Song ◽  
Tae Kim

This research used an invariant extended Kalman filter (IEKF) for the navigation of an unmanned aerial vehicle (UAV), and compared the properties and performance of this IEKF with those of an open-source navigation method based on an extended Kalman filter (EKF). The IEKF is a fairly new variant of the EKF, and its properties have been verified theoretically and through simulations and experiments. This study investigated its performance using a practical implementation and examined its distinctive features compared to the previous EKF-based approach. The test used two different types of UAVs: rotary wing and fixed wing. The method uses sensor measurements of the location and velocity from a GPS receiver; the acceleration, angular rate, and magnetic field from a microelectromechanical system-attitude heading reference system (MEMS-AHRS); and the altitude from a barometric sensor. Through flight tests, the estimated state variables and internal parameters such as the Kalman gain, state error covariance, and measurement innovation for the IEKF method and EKF-based method were compared. The estimated states and internal parameters showed that the IEKF method was more stable and convergent than the EKF-based method, although the estimated locations, velocities, and altitudes of the two methods were comparable.


Author(s):  
R. Jaganraj ◽  
R. Velu

This paper presents the frame work for aerodynamic parameter estimation for small fixed wing unmanned aerial vehicle (UAV). The recent development in autopilot hardware for small UAV enables the in-flight data collection of flight characteristics. A methodology is outlined to collect, process and arrive at a conclusion from the in-flight data using commercial flight controller of under 2kg (micro) fixed wing aircraft, ‘VAF01’ for which a Fault Detection and Identification (FDI) system is under development. As a part of the FDI, the linear longitudinal (3 DOF) aerodynamic model is developed and in-flight experimental data is used to estimate the longitudinal aerodynamic parameters. The Flight Path Reconstruction is completed with the acquired parameters from in-flight experiments and results are discussed for further utilization of them.


Sign in / Sign up

Export Citation Format

Share Document