scholarly journals A Geometric Dissimilarity Criterion Between Jordan Spatial Mosaics. Theoretical Aspects and Application to Segmentation Evaluation

2011 ◽  
Vol 42 (1) ◽  
pp. 25-49 ◽  
Author(s):  
Yann Gavet ◽  
Jean-Charles Pinoli
Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 212
Author(s):  
Youssef Skandarani ◽  
Pierre-Marc Jodoin ◽  
Alain Lalande

Deep learning methods are the de facto solutions to a multitude of medical image analysis tasks. Cardiac MRI segmentation is one such application, which, like many others, requires a large number of annotated data so that a trained network can generalize well. Unfortunately, the process of having a large number of manually curated images by medical experts is both slow and utterly expensive. In this paper, we set out to explore whether expert knowledge is a strict requirement for the creation of annotated data sets on which machine learning can successfully be trained. To do so, we gauged the performance of three segmentation models, namely U-Net, Attention U-Net, and ENet, trained with different loss functions on expert and non-expert ground truth for cardiac cine–MRI segmentation. Evaluation was done with classic segmentation metrics (Dice index and Hausdorff distance) as well as clinical measurements, such as the ventricular ejection fractions and the myocardial mass. The results reveal that generalization performances of a segmentation neural network trained on non-expert ground truth data is, to all practical purposes, as good as that trained on expert ground truth data, particularly when the non-expert receives a decent level of training, highlighting an opportunity for the efficient and cost-effective creation of annotations for cardiac data sets.


Methods ◽  
2017 ◽  
Vol 115 ◽  
pp. 119-127 ◽  
Author(s):  
Jan Funke ◽  
Jonas Klein ◽  
Francesc Moreno-Noguer ◽  
Albert Cardona ◽  
Matthew Cook

2009 ◽  
Vol 28 (5) ◽  
pp. 720-738 ◽  
Author(s):  
E. Hodneland ◽  
N.V. Bukoreshtliev ◽  
T.W. Eichler ◽  
Xue-Cheng Tai ◽  
S. Gurke ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 1193 ◽  
Author(s):  
Yongji Wang ◽  
Qingwen Qi ◽  
Ying Liu

Image segmentation is an important process and a prerequisite for object-based image analysis. Thus, evaluating the performance of segmentation algorithms is essential to identify effective segmentation methods and to optimize the scale. In this paper, we propose an unsupervised evaluation (UE) method using the area-weighted variance (WV) and Jeffries-Matusita (JM) distance to compare two image partitions to evaluate segmentation quality. The two measures were calculated based on the local measure criteria, and the JM distance was improved by considering the contribution of the common border between adjacent segments and the area of each segment in the JM distance formula, which makes the heterogeneity measure more effective and objective. Then the two measures were presented as a curve when changing the scale from 8 to 20, which can reflect the segmentation quality in both over- and under-segmentation. Furthermore, the WV and JM distance measures were combined by using three different strategies. The effectiveness of the combined indicators was illustrated through supervised evaluation (SE) methods to clearly reveal the segmentation quality and capture the trade-off between the two measures. In these experiments, the multiresolution segmentation (MRS) method was adopted for evaluation. The proposed UE method was compared with two existing UE methods to further confirm their capabilities. The visual and quantitative SE results demonstrated that the proposed UE method can improve the segmentation quality.


The aim of the project is to develop a methodology for automatic segmentation of multiple tumor from PET/CT images. Image pre-processing methods such as Contrast Limited Adaptive Histogram Equalization (CLAHE), image sharpening and Wiener filtering were performed to remove the artifacts due to contrast variations and noise. The image was segmented using K-means, Threshold segmentation, watershed segmentation, FCM clustering Segmentation, Mean shift Clustering Segmentation, Graph Cut Segmentation. Evaluation was made for the segmentation against the Ground Truth. Various Features was selected and extracted. Classification was made using SVM classifier and KNN classifier to classify the tumor as benign or malignant. The proposed method was carried out using PET/CT images of lung cancer patients and implemented using MATLAB.


Author(s):  
C. Wen ◽  
S. Lin ◽  
C. Wang ◽  
J. Li

Point clouds acquired by RGB-D camera-based indoor mobile mapping system suffer the problems of being noisy, exhibiting an uneven distribution, and incompleteness, which are the problems that introduce difficulties for point cloud planar surface segmentation. This paper presents a novel color-enhanced hybrid planar surface segmentation model for RGB-D camera-based indoor mobile mapping point clouds based on region growing method, and the model specially addresses the planar surface extraction task over point cloud according to the noisy and incomplete indoor mobile mapping point clouds. The proposed model combines the color moments features with the curvature feature to select the seed points better. Additionally, a more robust growing criteria based on the hybrid features is developed to avoid the generation of excessive over-segmentation debris. A segmentation evaluation process with a small set of labeled segmented data is used to determine the optimal hybrid weight. Several comparative experiments were conducted to evaluate the segmentation model, and the experimental results demonstrate the effectiveness and efficiency of the proposed hybrid segmentation method for indoor mobile mapping three-dimensional (3D) point cloud data.


Author(s):  
Yu-Jin Zhang

Image segmentation consists of subdividing an image into its constituent parts and extracting those parts of interest (objects). Due to its importance in image analysis, many research works have been conducted for this process. After 40 years of development, a large number of image (and video) segmentation techniques have been proposed and utilized in various applications (Zhang, 2006). With many algorithms developed, some efforts have been spent also on their evaluation, and these efforts have resulted around 100 evaluation papers that can be found in literature for the last century. Several studies have been made in the past in attempt to characterize these existing evaluation methods (Zhang, 1993; Zhang, 1996; Zhang 2001). Segmentation evaluation methods can be classified into analytical methods and empirical methods (Zhang, 1996). The analysis methods treat the algorithms for segmentation directly by examining the principle of algorithms while the empirical methods judge the segmented image (according to predefined criteria or comparing to reference image) so as to indirectly assess the performance of algorithms. Empirical evaluation is practically more effective and usable than analysis evaluation (Zhang, 1996). Recent advancements for segmentation evaluation are mainly made by the development of empirical evaluation techniques. After providing a list of evaluation criteria and methods proposed in the last century as background, this article will provide a summary of the recent (in 21st century) research works for empirical evaluation of image segmentation. These new research works are classified into three groups: (1) those based on existing techniques, (2) those made with modifications of existing techniques, and (3) those that used dissimilar ideas than that of existing techniques. A comparison of these evaluation methods is made before going to the future trends and conclusion.


Sign in / Sign up

Export Citation Format

Share Document