multiresolution segmentation
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 330
Author(s):  
Sejung Jung ◽  
Kirim Lee ◽  
Won Hee Lee

High-rise buildings (HRBs) as modern and visually unique land use continue to increase due to urbanization. Therefore, large-scale monitoring of HRB is very important for urban planning and environmental protection. This paper performed object-based HRB detection using high-resolution satellite image and digital map. Three study areas were acquired from KOMPSAT-3A, KOMPSAT-3, and WorldView-3, and object-based HRB detection was performed using the direction according to relief displacement by satellite image. Object-based multiresolution segmentation images were generated, focusing on HRB in each satellite image, and then combined with pixel-based building detection results obtained from MBI through majority voting to derive object-based building detection results. After that, to remove objects misdetected by HRB, the direction between HRB in the polygon layer of the digital map HRB and the HRB in the object-based building detection result was calculated. It was confirmed that the direction between the two calculated using the centroid coordinates of each building object converged with the azimuth angle of the satellite image, and results outside the error range were removed from the object-based HRB results. The HRBs in satellite images were defined as reference data, and the performance of the results obtained through the proposed method was analyzed. In addition, to evaluate the efficiency of the proposed technique, it was confirmed that the proposed method provides relatively good performance compared to the results of object-based HRB detection using shadows.


2021 ◽  
Vol 13 (13) ◽  
pp. 2618
Author(s):  
Carsten Juergens ◽  
M. Fabian Meyer-Heß

This contribution focuses on the utilization of very-high-resolution (VHR) images to identify construction areas and their temporal changes aiming to estimate the investment in construction as a basis for economic forecasts. Triggered by the need to improve macroeconomic forecasts and reduce their time intervals, the idea arose to use frequently available information derived from satellite imagery. For the improvement of macroeconomic forecasts, the period to detect changes between two points in time needs to be rather short because early identification of such investments is beneficial. Therefore, in this study, it is of interest to identify and quantify new construction areas, which will turn into build-up areas later. A multiresolution segmentation followed by a kNN classification is applied to WorldView images from an area around the southern part of Berlin, Germany. Specific material compositions of construction areas result in typical classification patterns different from other land cover classes. A GIS-based analysis follows to extract specific temporal “patterns of life” in construction areas. With the early identification of such patterns of life, it is possible to predict construction areas that will turn into real estate later. This information serves as an input for macroeconomic forecasts to support quicker forecasts in future.


2021 ◽  
Vol 10 (6) ◽  
pp. 420
Author(s):  
Jun Wang ◽  
Lili Jiang ◽  
Qingwen Qi ◽  
Yongji Wang

Image segmentation is of significance because it can provide objects that are the minimum analysis units for geographic object-based image analysis (GEOBIA). Most segmentation methods usually set parameters to identify geo-objects, and different parameter settings lead to different segmentation results; thus, parameter optimization is critical to obtain satisfactory segmentation results. Currently, many parameter optimization methods have been developed and successfully applied to the identification of single geo-objects. However, few studies have focused on the recognition of the union of different types of geo-objects (semantic geo-objects), such as a park. The recognition of semantic geo-objects is likely more crucial than that of single geo-objects because the former type of recognition is more correlated with the human perception. This paper proposes an approach to recognize semantic geo-objects. The key concept is that a single geo-object is the smallest component unit of a semantic geo-object, and semantic geo-objects are recognized by iteratively merging single geo-objects. Thus, the optimal scale of the semantic geo-objects is determined by iteratively recognizing the optimal scales of single geo-objects and using them as the initiation point of the reset scale parameter optimization interval. In this paper, we adopt the multiresolution segmentation (MRS) method to segment Gaofen-1 images and tested three scale parameter optimization methods to validate the proposed approach. The results show that the proposed approach can determine the scale parameters, which can produce semantic geo-objects.


2021 ◽  
Vol 11 (12) ◽  
pp. 5551
Author(s):  
Saziye Ozge Atik ◽  
Cengizhan Ipbuker

Depletion of natural resources, population growth, urban migration, and expanding drought conditions are some of the reasons why environmental monitoring programs are required and regularly produced and updated. Additionally, the usage of artificial intelligence in the geospatial field of Earth observation (EO) and regional land monitoring missions is a challenging issue. In this study, land cover and land use mapping was performed using the proposed CNN–MRS model. The CNN–MRS model consisted of two main steps: CNN-based land cover classification and enhancing the classification with spatial filter and multiresolution segmentation (MRS). Different band numbers of Sentinel-2A imagery and multiple patch sizes (32 × 32, 64 × 64, and 128 × 128 pixels) were used in the first experiment. The algorithms were evaluated in terms of overall accuracy, precision, recall, F1-score, and kappa coefficient. The highest overall accuracy was obtained with the proposed approach as 97.31% in Istanbul test site area and 98.44% in Kocaeli test site area. The accuracies revealed the efficiency of the CNN–MRS model for land cover map production in large areas. The McNemar test measured the significance of the models used. In the second experiment, with the Zurich Summer dataset, the overall accuracy of the proposed approach was obtained as 92.03%. The results are compared quantitatively with state-of-the-art CNN model results and related works.


2020 ◽  
Vol 12 (23) ◽  
pp. 3928 ◽  
Author(s):  
Shaobai He ◽  
Huaqiang Du ◽  
Guomo Zhou ◽  
Xuejian Li ◽  
Fangjie Mao ◽  
...  

The application of deep learning techniques, especially deep convolutional neural networks (DCNNs), in the intelligent mapping of very high spatial resolution (VHSR) remote sensing images has drawn much attention in the remote sensing community. However, the fragmented distribution of urban land use types and the complex structure of urban forests bring about a variety of challenges for urban land use mapping and the extraction of urban forests. Based on the DCNN algorithm, this study proposes a novel object-based U-net-DenseNet-coupled network (OUDN) method to realize urban land use mapping and the accurate extraction of urban forests. The proposed OUDN has three parts: the first part involves the coupling of the improved U-net and DenseNet architectures; then, the network is trained according to the labeled data sets, and the land use information in the study area is classified; the final part fuses the object boundary information obtained by object-based multiresolution segmentation into the classification layer, and a voting method is applied to optimize the classification results. The results show that (1) the classification results of the OUDN algorithm are better than those of U-net and DenseNet, and the average classification accuracy is 92.9%, an increase in approximately 3%; (2) for the U-net-DenseNet-coupled network (UDN) and OUDN, the urban forest extraction accuracies are higher than those of U-net and DenseNet, and the OUDN effectively alleviates the classification error caused by the fragmentation of urban distribution by combining object-based multiresolution segmentation features, making the overall accuracy (OA) of urban land use classification and the extraction accuracy of urban forests superior to those of the UDN algorithm; (3) based on the Spe-Texture (the spectral features combined with the texture features), the OA of the OUDN in the extraction of urban land use categories can reach 93.8%, thereby the algorithm achieved the accurate discrimination of different land use types, especially urban forests (99.7%). Therefore, this study provides a reference for feature setting for the mapping of urban land use information from VHSR imagery.


2020 ◽  
Vol 6 (11) ◽  
pp. 114
Author(s):  
Alim Samat ◽  
Erzhu Li ◽  
Sicong Liu ◽  
Zelang Miao ◽  
Wei Wang

In spectral-spatial classification of hyperspectral image tasks, the performance of conventional morphological profiles (MPs) that use a sequence of structural elements (SEs) with predefined sizes and shapes could be limited by mismatching all the sizes and shapes of real-world objects in an image. To overcome such limitation, this paper proposes the use of object-guided morphological profiles (OMPs) by adopting multiresolution segmentation (MRS)-based objects as SEs for morphological closing and opening by geodesic reconstruction. Additionally, the ExtraTrees, bagging, adaptive boosting (AdaBoost), and MultiBoost ensemble versions of the extremely randomized decision trees (ERDTs) are introduced and comparatively investigated for spectral-spatial classification of hyperspectral images. Two hyperspectral benchmark images are used to validate the proposed approaches in terms of classification accuracy. The experimental results confirm the effectiveness of the proposed spatial feature extractors and ensemble classifiers.


2020 ◽  
Vol 13 (3) ◽  
pp. 32-42
Author(s):  
Rudmir Rogerio de Camargo Faxina ◽  
Claudionor Ribeiro da Silva

The veredas are more than a phytophysiognomy. They constitute a wetland ecosystem that embraces different species in the Cerrado biome. The buriti (Mauritia flexuosa) is the main arboreal species of these environments, has economic relevance and its shape contributes to the identification of the veredas. This study aims to explore the potential of remote sensing for extraction of features using the techniques of segmentation and supervised classification. The area of study was located in Uberlândia, Minas Gerais/Brazil. A database containing field information and orthophoto obtained by UAV, with spatial resolution of 3.5 cm was necessary to use the multiresolution segmentation algorithm of eCognition. The results showed the efficiency of the method, with detection of 75.56% of the M. flexuosa species in the scene. When considering the band of altimetry, the result was 21.61% higher, with a global accuracy of 97%. The RMSE after field validation was 1.14 m. With the collected data and the results, it was possible to extract relevant ontological information, such as the average treetop diameter, shape, leaf length, height, field distribution pattern and spectral response of the target. These parameters can support and contribute to the monitoring and conservation of the species and the vereda environment.


Author(s):  
P. B. Budha ◽  
A. Bhardwaj

Abstract. Locating landslides and determining its extent is deemed an important task in estimating loss and damage and carry out mitigation works. As landslides are recurring phenomena in the research site, Siwalik Hills of western Nepal, freely available Sentinel-2 satellite images were considered to delineate landslides. The method employed in this process was Object-Based Image Analysis carried out in eCognition software using multiresolution segmentation algorithm. Parameters taken for segmentation were a scale of 20, the shape of 0.3, and compactness of 0.5. When a threshold value of < 0.35 in NDVI was used to distinguish landslides from image objects, some non-landslide objects were also selected. These false positives were removed successively using the threshold values on different bands, band ratios, slope information, hillshade and geometrical properties of image objects. There were altogether 264 landslides detected in the study area with size ranging from 300 m2 to 1675 m2 and landslide density of approximately 2 per km2. The accuracy, when compared to reference inventory, showed correctness and completeness measuring 80.28% and 66.27% respectively. These results showed semi-automatic landslide extraction was successful and Sentinel-2 can be used for similar tasks in other areas of Siwalik.


2019 ◽  
Vol 11 (22) ◽  
pp. 2669
Author(s):  
Edyta Woźniak ◽  
Sebastian Aleksandrowicz

Mapping of regional fires would make it possible to analyse their environmental, social and economic impact, as well as to develop better fire management systems. However, automatic mapping of burnt areas has proved to be a challenging task, due to the wide diversity of vegetation cover worldwide and the heterogeneous nature of fires themselves. Here, we present an algorithm for the automatic mapping of burnt areas using medium-resolution optical images. Although developed for Landsat images, it can be also applied to Sentinel-2 images without modification. The algorithm draws upon the classical concept of differences in pre- and post-fire reflectance, but also takes advantage of the object-oriented approach and a new threshold calculation method. It consists of four steps. The first concerns the calculation of spectral indices and their differences, together with differences in spectral layers based on pre- and post-fire images. In the second step, multiresolution segmentation and masking are performed (clouds, water bodies and non-vegetated areas are removed from further analysis). Thirdly, ‘core’ burnt areas are detected using automatically-adjusted thresholds. Thresholds are calculated on the basis of specific functions established for difference layers. The last step combines neighbourhood analysis and patch growing to define the final shape of burnt areas. The algorithm was tested in 27 areas located worldwide, and covered by various types of vegetation. Comparisons with manual interpretation show that the fully-automated classification is accurate. Over 82% of classifications were considered satisfactory (overall accuracy > 90%; user and producer accuracy > 70%).


Sign in / Sign up

Export Citation Format

Share Document