Effect of bismuth (Bi3+) substitution on structural, optical, dielectric and magnetic nature of La2CoMnO6 double perovskite

Author(s):  
Niketa Bajpai ◽  
M. Saleem ◽  
Ashutosh Mishra
2021 ◽  
Vol 123 ◽  
pp. 105503
Author(s):  
S. Bhattacharjee ◽  
Bhagyashree Mohanty ◽  
N.C. Nayak ◽  
R.K. Parida ◽  
B.N. Parida

SPIN ◽  
2021 ◽  
pp. 2150012
Author(s):  
W. Benosmane ◽  
S. Benatmane ◽  
R. Bentata ◽  
W. Benstaali

The structural electronic and magnetic properties of the double perovskite Ca2CrNbO6 in the cubic structure are investigated using the empirical full-potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT). These properties are calculated using the Generalized Gradient Approximation (GGA), [Formula: see text] and modified Becke–Johnson mBJ-GGA. In addition, the real and imaginary parts of the optical dielectric function and the reflectivity, and the refractive spectra are computed and the main features shown by their spectra are ascertained on the base of the investigation of density of states.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 244
Author(s):  
Qingkai Tang ◽  
Xinhua Zhu

The structural, optical, dielectric, and magnetic properties of double perovskite La2FeReO6+δ (LFRO) powders synthesized by solid-state reaction method under CO reduced atmosphere are reported on in this paper. Reitveld refinements on the XRD data revealed that the LFRO powders crystallized in an orthogonal structure (Pbnm space group) with column-like morphology. The molar ratios of La, Fe, and Re elements were close to 2:1:1. XPS spectra verified the mixed chemical states of Fe and Re ions, and two oxygen species in the LFRO powders. The LFRO ceramics exhibited a relaxor-like dielectric behavior, and the associated activation energy was 0.05 eV. Possible origins of the dielectric relaxation behavior are discussed based on the hopping of electrons among the hetero-valence ions at B-site, oxygen ion hopping through the vacant oxygen sites, and the jumping of electrons trapped in the shallower level created by oxygen vacancy. The LFRO powders display room temperature ferromagnetism with Curie temperature of 746 K. A Griffiths-like phase was observed in the LFRO powders with a Griffiths temperature of 758 K. The direct optical band gap of the LFRO powders was 2.30 eV, deduced from their absorption spectra, as confirmed by their green photoluminescence spectra with a strong peak around 556 nm.


2002 ◽  
Vol 57 (12) ◽  
pp. 10 ◽  
Author(s):  
Nikolay T. Cherpak ◽  
A. A. Barannik ◽  
Yu.V. Prokopenko ◽  
Yu. F. Filippov ◽  
T.A. Smirnova

2014 ◽  
Vol 73 (1) ◽  
pp. 73-81 ◽  
Author(s):  
A. Ya. Kirichenko ◽  
G. V. Golubnichaya ◽  
I. G. Maximchuk ◽  
V. B. Yurchenko

2018 ◽  
Author(s):  
Julian Steele ◽  
Masoumeh Keshavarz ◽  
Elke Debroye ◽  
Haifeng Yuan ◽  
Johan Hofkens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document