room temperature ferromagnetism
Recently Published Documents





Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 244
Qingkai Tang ◽  
Xinhua Zhu

The structural, optical, dielectric, and magnetic properties of double perovskite La2FeReO6+δ (LFRO) powders synthesized by solid-state reaction method under CO reduced atmosphere are reported on in this paper. Reitveld refinements on the XRD data revealed that the LFRO powders crystallized in an orthogonal structure (Pbnm space group) with column-like morphology. The molar ratios of La, Fe, and Re elements were close to 2:1:1. XPS spectra verified the mixed chemical states of Fe and Re ions, and two oxygen species in the LFRO powders. The LFRO ceramics exhibited a relaxor-like dielectric behavior, and the associated activation energy was 0.05 eV. Possible origins of the dielectric relaxation behavior are discussed based on the hopping of electrons among the hetero-valence ions at B-site, oxygen ion hopping through the vacant oxygen sites, and the jumping of electrons trapped in the shallower level created by oxygen vacancy. The LFRO powders display room temperature ferromagnetism with Curie temperature of 746 K. A Griffiths-like phase was observed in the LFRO powders with a Griffiths temperature of 758 K. The direct optical band gap of the LFRO powders was 2.30 eV, deduced from their absorption spectra, as confirmed by their green photoluminescence spectra with a strong peak around 556 nm.

2022 ◽  
pp. 2108103
Qinglin Jiang ◽  
Jiang Zhang ◽  
Zhongquan Mao ◽  
Yao Yao ◽  
Duokai Zhao ◽  

2022 ◽  
Vol 128 (1) ◽  
Qiao Jin ◽  
Zhiwen Wang ◽  
Qinghua Zhang ◽  
Yonghong Yu ◽  
Shan Lin ◽  

Jing Wang ◽  
Weiyuan Wang ◽  
Jiyu Fan ◽  
Huan Zheng ◽  
Hao Liu ◽  

Abstract Large-scale growth of two-dimensional (2D) ferromagnetic thin films will provide an ideal platform for studying 2D magnetism and active spintronic devices. However, controllable growth of 2D ferromagnets over large areas faces tremendous challenges. Herein, we report a large-area growth of 2D ferromagnetic single-crystal thin films Cr4Te5 on Al2O3 (0001) substrates using pulsed laser deposition. X-ray diffraction patterns and atomic force microscopy detection confirm that all thin films are high quality epitaxy together with atom-level smooth. Magnetic measurements show the persistence of ferromagnetic ordering state up to above room temperature, with a Curie temperature 320 K, atomic magnetic moment 0.307µB/Cr, and the easy-magnetization axis in film plane. Comparing bulk Cr4Te5 single-crystal, the critical exponent β=0.491 indicates that the magnetic interactions of thin film obey mean-field model rather than 3D Heisenberg model. This work will open a avenue for growing large-scale 2D ferromagnet and developing room temperature 2D magnet-based nanodevices.

Yue Li ◽  
Shoubing Ding ◽  
Yiying Luo ◽  
Peng Yu ◽  
Yuting Cui ◽  

Room temperature intrinsic diluted ferromagnetic semiconductor (DMS) is highly desirable for application in spintronics. Here we report room temperature ferromagnetism in Li1.04(Cd1-xMnx)As . A Curie temperature of 318 K has...

2021 ◽  
Vol 6 (4) ◽  
pp. 53
Cengiz Şen

Cerium oxides (ceria) are materials that exhibit weak, room-temperature ferromagnetism without d-electrons. The latter are usually responsible for magnetism in a variety of other oxide compounds, but the underlying mechanism for such a magnetic response in ceria without the d-electrons (d0-magnetism) is still under debate. A possible explanation is Zener double-exchange, where itinerant electrons polarize the localized spins via Hund-coupling as they hop from site to site. Here, we report magnetization and spin-spin correlation results using various values of the Hund-coupling in a one-orbital double-exchange model with Ising spins. In the real material with formula CeO2−x, the oxygen-deficient sites are denoted by x. These sites are related to the density of tetravalent cerium spins (the Ising spin background in our model), which we denoted as and set at N=0.50 in our simulations. Our results at this value of localized spin concentration show ferromagnetic tendencies at low carrier densities (n=0.25). However, ferromagnetism is lost at intermediate carrier concentrations (n=0.50) due to charge localization at high temperatures, as evident from density of states calculations and Monte Carlo snapshots. To our knowledge, our study based on a realistic Zener-type double exchange mechanism is a first in the study of magnetism in cerium oxides. Our results are also consistent with previous studies using similar Hamiltonians in the context of diluted magnetic semiconductors, where Heisenberg spins were used.

Meiyu Dong ◽  
Lu Zhang ◽  
Lihu Liu ◽  
Qin Xu ◽  
Huiyuan Sun

Sign in / Sign up

Export Citation Format

Share Document