Infinite Horizon Optimal Control Problem for Stochastic Evolution Equations in Hilbert Spaces

2015 ◽  
Vol 22 (3) ◽  
pp. 531-554
Author(s):  
Jianjun Zhou
2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Xueping Zhu ◽  
Jianjun Zhou

The aim of the present paper is to study an infinite horizon optimal control problem in which the controlled state dynamics is governed by a stochastic delay evolution equation in Hilbert spaces. The existence and uniqueness of the optimal control are obtained by means of associated infinite horizon backward stochastic differential equations without assuming the Gâteaux differentiability of the drift coefficient and the diffusion coefficient. An optimal control problem of stochastic delay partial differential equations is also given as an example to illustrate our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Ruimin Xu ◽  
Tingting Wu

We obtain the existence and uniqueness result of the mild solutions to mean-field backward stochastic evolution equations (BSEEs) in Hilbert spaces under a weaker condition than the Lipschitz one. As an intermediate step, the existence and uniqueness result for the mild solutions of mean-field BSEEs under Lipschitz condition is also established. And then a maximum principle for optimal control problems governed by backward stochastic partial differential equations (BSPDEs) of mean-field type is presented. In this control system, the control domain need not to be convex and the coefficients, both in the state equation and in the cost functional, depend on the law of the BSPDE as well as the state and the control. Finally, a linear-quadratic optimal control problem is given to explain our theoretical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Chao Liu ◽  
Shengjing Tang ◽  
Jie Guo

The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3), the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.


Sign in / Sign up

Export Citation Format

Share Document