scholarly journals Travelling Waves for Adaptive Grid Discretizations of Reaction Diffusion Systems II: Linear Theory

Author(s):  
H. J. Hupkes ◽  
E. S. Van Vleck

AbstractIn this paper we consider an adaptive spatial discretization scheme for the Nagumo PDE. The scheme is a commonly used spatial mesh adaptation method based on equidistributing the arclength of the solution under consideration. We assume that this equidistribution is strictly enforced, which leads to the non-local problem with infinite range interactions that we derived in Hupkes and Van Vleck (J Dyn Differ Equ 28:955, 2016). For small spatial grid-sizes, we establish some useful Fredholm properties for the operator that arises after linearizing our system around the travelling wave solutions to the original Nagumo PDE. In particular, we perform a singular perturbation argument to lift these properties from the natural limiting operator. This limiting operator is a spatially stretched and twisted version of the standard second order differential operator that is associated to the PDE waves.

Author(s):  
H. J. Hupkes ◽  
E. S. Van Vleck

AbstractIn this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE. In particular, we consider a commonly used time dependent moving mesh method that aims to equidistribute the arclength of the solution under consideration. We assume that the discrete analogue of this equidistribution is strictly enforced, which allows us to reduce the effective dynamics to a scalar non-local problem with infinite range interactions. We show that this reduced problem is well-posed and obtain useful estimates on the resulting nonlinearities. In the sequel papers (Hupkes and Van Vleck in Travelling waves for adaptive grid discretizations of reaction diffusion systems II: linear theory; Travelling waves for adaptive grid discretizations of reaction diffusion systems III: nonlinear theory) we use these estimates to show that travelling waves persist under these adaptive spatial discretizations.


1999 ◽  
Vol 129 (6) ◽  
pp. 1263-1290 ◽  
Author(s):  
B. Sandstede ◽  
A. Scheel

Reaction-diffusion systems on the real line are considered. Localized travelling waves become unstable when the essential spectrum of the linearization about them crosses the imaginary axis. In this article, it is shown that this transition to instability is accompanied by the bifurcation of a family of large patterns that are a superposition of the primary travelling wave with steady spatially periodic patterns of small amplitude. The bifurcating patterns can be parametrized by the wavelength of the steady patterns; they are time-periodic in a moving frame. A major difficulty in analysing this bifurcation is its genuinely infinite-dimensional nature. In particular, finite-dimensional Lyapunov–Schmidt reductions or centre-manifold theory do not seem to be applicable to pulses having their essential spectrum touching the imaginary axis.


2019 ◽  
pp. 1-12
Author(s):  
Md. Kamrujjaman ◽  
Asif Ahmed ◽  
Shohel Ahmed

In this paper, we consider a competitive reaction-diffusion model to describe the existence of travelling wave solutions of two competing species. Moreover, the non-linear system is also studied by introducing different competitive-cooperative coefficients; constant and spatially distributed which leads to the persistence and extinction of organisms in a heterogeneous environment of population biology. If the diffusion coefficients and other parameters are positive constant, it is seen that one species is in extinction by the other and coexistence is also possible under certain conditions on carrying capacity. The results are numerically investigated by using the Finite difference method (FDM).


Author(s):  
Michael Sieber ◽  
Horst Malchow ◽  
Sergei V. Petrovskii

Ecological field data suggest that some species show periodic changes in abundance over time and in a specific spatial direction. Periodic travelling waves as solutions to reaction–diffusion equations have helped to identify possible scenarios, by which such spatio-temporal patterns may arise. In this paper, such solutions are tested for their robustness against an irregular temporal forcing, since most natural populations can be expected to be subject to erratic fluctuations imposed by the environment. It is found that small environmental noise is able to suppress periodic travelling waves in stochastic variants of oscillatory reaction–diffusion systems. Irregular spatio-temporal oscillations, however, appear to be more robust and persist under the same stochastic forcing.


Author(s):  
Teresa Faria ◽  
Wenzhang Huang ◽  
Jianhong Wu

We develop a new approach to obtain the existence of travelling wave solutions for reaction–diffusion equations with delayed non-local response. The approach is based on an abstract formulation of the wave profile as a solution of an operational equation in a certain Banach space, coupled with an index formula of the associated Fredholm operator and some careful estimation of the nonlinear perturbation. The general result relates the existence of travelling wave solutions to the existence of heteroclinic connecting orbits of a corresponding functional differential equation, and this result is illustrated by an application to a model describing the population growth when the species has two age classes and the diffusion of the individual during the maturation process leads to an interesting non-local and delayed response for the matured population.


Sign in / Sign up

Export Citation Format

Share Document