scholarly journals Competitive Reaction-diffusion Systems: Travelling Waves and Numerical Solutions

2019 ◽  
pp. 1-12
Author(s):  
Md. Kamrujjaman ◽  
Asif Ahmed ◽  
Shohel Ahmed

In this paper, we consider a competitive reaction-diffusion model to describe the existence of travelling wave solutions of two competing species. Moreover, the non-linear system is also studied by introducing different competitive-cooperative coefficients; constant and spatially distributed which leads to the persistence and extinction of organisms in a heterogeneous environment of population biology. If the diffusion coefficients and other parameters are positive constant, it is seen that one species is in extinction by the other and coexistence is also possible under certain conditions on carrying capacity. The results are numerically investigated by using the Finite difference method (FDM).

Author(s):  
H. J. Hupkes ◽  
E. S. Van Vleck

AbstractIn this paper we consider an adaptive spatial discretization scheme for the Nagumo PDE. The scheme is a commonly used spatial mesh adaptation method based on equidistributing the arclength of the solution under consideration. We assume that this equidistribution is strictly enforced, which leads to the non-local problem with infinite range interactions that we derived in Hupkes and Van Vleck (J Dyn Differ Equ 28:955, 2016). For small spatial grid-sizes, we establish some useful Fredholm properties for the operator that arises after linearizing our system around the travelling wave solutions to the original Nagumo PDE. In particular, we perform a singular perturbation argument to lift these properties from the natural limiting operator. This limiting operator is a spatially stretched and twisted version of the standard second order differential operator that is associated to the PDE waves.


1999 ◽  
Vol 129 (6) ◽  
pp. 1263-1290 ◽  
Author(s):  
B. Sandstede ◽  
A. Scheel

Reaction-diffusion systems on the real line are considered. Localized travelling waves become unstable when the essential spectrum of the linearization about them crosses the imaginary axis. In this article, it is shown that this transition to instability is accompanied by the bifurcation of a family of large patterns that are a superposition of the primary travelling wave with steady spatially periodic patterns of small amplitude. The bifurcating patterns can be parametrized by the wavelength of the steady patterns; they are time-periodic in a moving frame. A major difficulty in analysing this bifurcation is its genuinely infinite-dimensional nature. In particular, finite-dimensional Lyapunov–Schmidt reductions or centre-manifold theory do not seem to be applicable to pulses having their essential spectrum touching the imaginary axis.


Author(s):  
Michael Sieber ◽  
Horst Malchow ◽  
Sergei V. Petrovskii

Ecological field data suggest that some species show periodic changes in abundance over time and in a specific spatial direction. Periodic travelling waves as solutions to reaction–diffusion equations have helped to identify possible scenarios, by which such spatio-temporal patterns may arise. In this paper, such solutions are tested for their robustness against an irregular temporal forcing, since most natural populations can be expected to be subject to erratic fluctuations imposed by the environment. It is found that small environmental noise is able to suppress periodic travelling waves in stochastic variants of oscillatory reaction–diffusion systems. Irregular spatio-temporal oscillations, however, appear to be more robust and persist under the same stochastic forcing.


The possibility of travelling reaction-diffusion waves developing in the isothermal chemical system governed by the cubic autocatalytic reaction A + 2B → 3B (rate k 3 ab 2 ) coupled with either the linear decay step B → C (rate k 2 b ) or the quadratic decay step B + B → C (rate k 4 b 2 ) is examined. Two simple solutions are obtained,namely the well-stirred analogue of the spatially inhomogeneous problem and the solution for small input of the autocatalyst B. Both of these suggest that, for the quadratic decay case, a wave will develop only if the non-dimensional parameter k ═ k 4 / k 3 a 0 < 1 (where a 0 is the initial concentration of the reactant A), with there being no restriction on the initial input of the autocatalyst B. However, for the linear decay case the initiation of a travelling wave depends on the parameter v ═ k 2 / k 3 a 2 0 and that, in addition, there is an input threshold on B before the formation of a wave will occur. The equations governing the fully developed travelling waves are then considered and it is shown that for the quadratic decay case the situation is similar to previous work in quadratic autocatalysis with linear decay, with a necessary condition for the existence of a travelling-wave solution being that K < 1. However, the case of linear decay is quite different, with a necessary condition for the existence of a travelling wave solution now found to be v < 1/4 Numerical solutions of the equations governing this case reveal further that a solution exists only for v < v c , with v c ≈ 0.0465, and that there are two branches of solution for 0 < v < v c . The behaviour of these lower branch solutions as v → 0 is discussed. The initial-value problem is then considered. For the quadratic decay case it is shown that the uniform state a ═ a 0 , b ═ 0 is globally asymptotically stable (i. e. a → a 0 , b → 0 uniformly for large times) for all k > 1. For the linear decay case it is shown that the development of a travelling wave requires β 0 > v (where β 0 is a measure of the initial input of B) for v < v c . These theoretical results are then complemented by numerical solutions of the initial-value problem for both cases, which confirm the various predictions of the theory. The behaviour of the solution of the equations governing the travelling waves is then discussed in the limits K → 0, v → 0 and K → 1. In the first case the solution approaches the solution for K ═ 0 (or v =0) on the length scale of the reaction-diffusion front, with there being a long tail region of length scale O ( K -1 ) (or O ( v -1 )) in which the autocatalyst B decays to zero. In the latter case we find that the concentration of reactant A is 1 + O [(1 - k )] and autocatalyst B is O[(1 - k 2 ] with the thickness of the reaction-diffusion front becoming large, of thickness O [(1- k ) -3/2 ].


Sign in / Sign up

Export Citation Format

Share Document